
Uncertain Data Management
Probabilistic Query Evaluation

Antoine Amarilli1, Silviu Maniu2

December 5th, 2017
1Télécom ParisTech

2LRI

1/45

Table of contents

Probabilistic query evaluation

Naive evaluation

Extensional evaluation

Intensional query evaluation

Conclusion

2/45

Reminder: TID

Remember tuple-independent databases (TID):

U

date prof

04 S 0.8
04 A 0.2

Remember that they stand for a probabilistic database:

U

date prof

04 S
04 A

U

date prof

04 S
04 A

U

date prof

04 S
04 A

U

date prof

04 S
04 A

0.8× 0.2 (1− 0.8)× 0.2 0.8× (1− 0.2) (1− 0.8)× (1− 0.2)

3/45

Reminder: TID

Remember tuple-independent databases (TID):

U

date prof

04 S 0.8
04 A 0.2

Remember that they stand for a probabilistic database:

U

date prof

04 S
04 A

U

date prof

04 S
04 A

U

date prof

04 S
04 A

U

date prof

04 S
04 A

0.8× 0.2 (1− 0.8)× 0.2 0.8× (1− 0.2) (1− 0.8)× (1− 0.2)

3/45

Reminder: TID

Remember tuple-independent databases (TID):

U

date prof

04 S 0.8
04 A 0.2

Remember that they stand for a probabilistic database:

U

date prof

04 S
04 A

U

date prof

04 S
04 A

U

date prof

04 S
04 A

U

date prof

04 S
04 A

0.8× 0.2 (1− 0.8)× 0.2 0.8× (1− 0.2) (1− 0.8)× (1− 0.2)

3/45

Reminder: TID

Remember tuple-independent databases (TID):

U

date prof

04 S 0.8
04 A 0.2

Remember that they stand for a probabilistic database:

U

date prof

04 S
04 A

U

date prof

04 S
04 A

U

date prof

04 S
04 A

U

date prof

04 S
04 A

0.8× 0.2 (1− 0.8)× 0.2 0.8× (1− 0.2) (1− 0.8)× (1− 0.2)

3/45

Reminder: TID

Remember tuple-independent databases (TID):

U

date prof

04 S 0.8
04 A 0.2

Remember that they stand for a probabilistic database:

U

date prof

04 S
04 A

U

date prof

04 S
04 A

U

date prof

04 S
04 A

U

date prof

04 S
04 A

0.8× 0.2 (1− 0.8)× 0.2 0.8× (1− 0.2) (1− 0.8)× (1− 0.2)

3/45

Reminder: TID

Remember tuple-independent databases (TID):

U

date prof

04 S 0.8
04 A 0.2

Remember that they stand for a probabilistic database:

U

date prof

04 S
04 A

U

date prof

04 S
04 A

U

date prof

04 S
04 A

U

date prof

04 S
04 A

0.8× 0.2

(1− 0.8)× 0.2 0.8× (1− 0.2) (1− 0.8)× (1− 0.2)

3/45

Reminder: TID

Remember tuple-independent databases (TID):

U

date prof

04 S 0.8
04 A 0.2

Remember that they stand for a probabilistic database:

U

date prof

04 S
04 A

U

date prof

04 S
04 A

U

date prof

04 S
04 A

U

date prof

04 S
04 A

0.8× 0.2 (1− 0.8)× 0.2

0.8× (1− 0.2) (1− 0.8)× (1− 0.2)

3/45

Reminder: TID

Remember tuple-independent databases (TID):

U

date prof

04 S 0.8
04 A 0.2

Remember that they stand for a probabilistic database:

U

date prof

04 S
04 A

U

date prof

04 S
04 A

U

date prof

04 S
04 A

U

date prof

04 S
04 A

0.8× 0.2 (1− 0.8)× 0.2 0.8× (1− 0.2)

(1− 0.8)× (1− 0.2)

3/45

Reminder: TID

Remember tuple-independent databases (TID):

U

date prof

04 S 0.8
04 A 0.2

Remember that they stand for a probabilistic database:

U

date prof

04 S
04 A

U

date prof

04 S
04 A

U

date prof

04 S
04 A

U

date prof

04 S
04 A

0.8× 0.2 (1− 0.8)× 0.2 0.8× (1− 0.2) (1− 0.8)× (1− 0.2)
3/45

Reminder: Relational algebra on probabilistic databases

U1
04 S. C017
11 S. C47

π(U1) = 0.8

U2
11 A. C017

π(U2) = 0.2

∪

V1

π(V1) = 0.9

V2
11 A. C017

π(V2) = 0.1

=

W1

04 S. C017
11 S. C47

π(W1) = 0.8× 0.9

W2

04 S. C017
11 S. C47
11 A. C017

π(W1) = 0.8× 0.1

W3

11 A. C017

π(W1) = 0.2× 0.9
+0.2× 0.1

4/45

Reminder: Relational algebra on probabilistic databases

U1
04 S. C017
11 S. C47

π(U1) = 0.8

U2
11 A. C017

π(U2) = 0.2

∪

V1

π(V1) = 0.9

V2
11 A. C017

π(V2) = 0.1

=

W1

04 S. C017
11 S. C47

π(W1) = 0.8× 0.9

W2

04 S. C017
11 S. C47
11 A. C017

π(W1) = 0.8× 0.1

W3

11 A. C017

π(W1) = 0.2× 0.9
+0.2× 0.1

4/45

Reminder: Relational algebra on probabilistic databases

U1
04 S. C017
11 S. C47

π(U1) = 0.8

U2
11 A. C017

π(U2) = 0.2

∪

V1

π(V1) = 0.9

V2
11 A. C017

π(V2) = 0.1

=

W1

04 S. C017
11 S. C47

π(W1) = 0.8× 0.9

W2

04 S. C017
11 S. C47
11 A. C017

π(W1) = 0.8× 0.1

W3

11 A. C017

π(W1) = 0.2× 0.9
+0.2× 0.1

4/45

Reminder: Relational algebra on probabilistic databases

U1
04 S. C017
11 S. C47

π(U1) = 0.8

U2
11 A. C017

π(U2) = 0.2

∪

V1

π(V1) = 0.9

V2
11 A. C017

π(V2) = 0.1

=

W1

04 S. C017
11 S. C47

π(W1) = 0.8× 0.9

W2

04 S. C017
11 S. C47
11 A. C017

π(W1) = 0.8× 0.1

W3

11 A. C017

π(W1) = 0.2× 0.9
+0.2× 0.1

4/45

Reminder: Relational algebra on probabilistic databases

U1
04 S. C017
11 S. C47
π(U1) = 0.8

U2
11 A. C017
π(U2) = 0.2

∪

V1

π(V1) = 0.9

V2
11 A. C017
π(V2) = 0.1

=

W1

04 S. C017
11 S. C47

π(W1) = 0.8× 0.9

W2

04 S. C017
11 S. C47
11 A. C017

π(W1) = 0.8× 0.1

W3

11 A. C017

π(W1) = 0.2× 0.9
+0.2× 0.1

4/45

Reminder: Relational algebra on probabilistic databases

U1
04 S. C017
11 S. C47
π(U1) = 0.8

U2
11 A. C017
π(U2) = 0.2

∪

V1

π(V1) = 0.9

V2
11 A. C017
π(V2) = 0.1

=

W1

04 S. C017
11 S. C47

π(W1) = 0.8× 0.9

W2

04 S. C017
11 S. C47
11 A. C017

π(W1) = 0.8× 0.1

W3

11 A. C017

π(W1) = 0.2× 0.9
+0.2× 0.1

4/45

Reminder: Relational algebra on probabilistic databases

U1
04 S. C017
11 S. C47
π(U1) = 0.8

U2
11 A. C017
π(U2) = 0.2

∪

V1

π(V1) = 0.9

V2
11 A. C017
π(V2) = 0.1

=

W1

04 S. C017
11 S. C47

π(W1) = 0.8× 0.9
W2

04 S. C017
11 S. C47
11 A. C017

π(W1) = 0.8× 0.1

W3

11 A. C017

π(W1) = 0.2× 0.9
+0.2× 0.1

4/45

Reminder: Relational algebra on probabilistic databases

U1
04 S. C017
11 S. C47
π(U1) = 0.8

U2
11 A. C017
π(U2) = 0.2

∪

V1

π(V1) = 0.9

V2
11 A. C017
π(V2) = 0.1

=

W1

04 S. C017
11 S. C47

π(W1) = 0.8× 0.9

W2

04 S. C017
11 S. C47
11 A. C017

π(W1) = 0.8× 0.1
W3

11 A. C017

π(W1) = 0.2× 0.9
+0.2× 0.1

4/45

Reminder: Relational algebra on probabilistic databases

U1
04 S. C017
11 S. C47
π(U1) = 0.8

U2
11 A. C017
π(U2) = 0.2

∪

V1

π(V1) = 0.9

V2
11 A. C017
π(V2) = 0.1

=

W1

04 S. C017
11 S. C47

π(W1) = 0.8× 0.9

W2

04 S. C017
11 S. C47
11 A. C017

π(W1) = 0.8× 0.1

W3

11 A. C017

π(W1) = 0.2× 0.9
+0.2× 0.1

4/45

Reminder: Relational algebra on probabilistic databases

U1
04 S. C017
11 S. C47
π(U1) = 0.8

U2
11 A. C017
π(U2) = 0.2

∪

V1

π(V1) = 0.9

V2
11 A. C017
π(V2) = 0.1

=

W1

04 S. C017
11 S. C47
π(W1) = 0.8× 0.9

W2

04 S. C017
11 S. C47
11 A. C017

π(W1) = 0.8× 0.1

W3

11 A. C017

π(W1) = 0.2× 0.9
+0.2× 0.1

4/45

Reminder: Relational algebra on probabilistic databases

U1
04 S. C017
11 S. C47
π(U1) = 0.8

U2
11 A. C017
π(U2) = 0.2

∪

V1

π(V1) = 0.9

V2
11 A. C017
π(V2) = 0.1

=

W1

04 S. C017
11 S. C47
π(W1) = 0.8× 0.9

W2

04 S. C017
11 S. C47
11 A. C017
π(W1) = 0.8× 0.1

W3

11 A. C017

π(W1) = 0.2× 0.9
+0.2× 0.1

4/45

Reminder: Relational algebra on probabilistic databases

U1
04 S. C017
11 S. C47
π(U1) = 0.8

U2
11 A. C017
π(U2) = 0.2

∪

V1

π(V1) = 0.9

V2
11 A. C017
π(V2) = 0.1

=

W1

04 S. C017
11 S. C47
π(W1) = 0.8× 0.9

W2

04 S. C017
11 S. C47
11 A. C017
π(W1) = 0.8× 0.1

W3

11 A. C017
π(W1) = 0.2× 0.9

+0.2× 0.1

4/45

Reminder: Relational algebra on probabilistic databases

U1
04 S. C017
11 S. C47
π(U1) = 0.8

U2
11 A. C017
π(U2) = 0.2

∪

V1

π(V1) = 0.9

V2
11 A. C017
π(V2) = 0.1

=

W1

04 S. C017
11 S. C47
π(W1) = 0.8× 0.9

W2

04 S. C017
11 S. C47
11 A. C017
π(W1) = 0.8× 0.1

W3

11 A. C017
π(W1) = 0.2× 0.9

+0.2× 0.1
4/45

Reminder: strong representation system

• TID are not a strong representation system

• The result of a relational algebra query on a TID database
is generally not representable as a TID database

→ Often, we don’t want the entire result

→ We just want to know the probability of each output tuple

5/45

Reminder: strong representation system

• TID are not a strong representation system

• The result of a relational algebra query on a TID database
is generally not representable as a TID database

→ Often, we don’t want the entire result

→ We just want to know the probability of each output tuple

5/45

Reminder: strong representation system

• TID are not a strong representation system

• The result of a relational algebra query on a TID database
is generally not representable as a TID database

→ Often, we don’t want the entire result

→ We just want to know the probability of each output tuple

5/45

Reminder: strong representation system

• TID are not a strong representation system

• The result of a relational algebra query on a TID database
is generally not representable as a TID database

→ Often, we don’t want the entire result

→ We just want to know the probability of each output tuple

5/45

Probabilistic query evaluation

• Inputs:
• a database D of TID instances
• a relational algebra query Q
• a result tuple~t

• Output : what is the probability that~t is in Q(D)?

→ What is the marginal probability of obtaining~t as a result?

6/45

Probabilistic query evaluation

• Inputs:
• a database D of TID instances
• a relational algebra query Q
• a result tuple~t

• Output : what is the probability that~t is in Q(D)?

→ What is the marginal probability of obtaining~t as a result?

6/45

Probabilistic query evaluation

• Inputs:
• a database D of TID instances
• a relational algebra query Q
• a result tuple~t

• Output : what is the probability that~t is in Q(D)?

→ What is the marginal probability of obtaining~t as a result?

6/45

Probabilistic query evaluation example

TID instance U Query Q Tuple~t

date prof

04 S 0.8
04 A 0.2

πprof(U) S

→ The marginal probability is 0.8

7/45

Probabilistic query evaluation example

TID instance U Query Q Tuple~t

date prof

04 S 0.8
04 A 0.2

πprof(U) S

→ The marginal probability is 0.8

7/45

Marginal probabilities vs TID representations

Here’s another example:

TID instance U′ TID instance V Query Q Tuple~t

date prof

04 S 1
04 A 1

date

04 0.5

πprof(U′ ./ V) S

and

A

→ The marginal probability of S is 0.5
→ The marginal probability of A is also 0.5
→ Caution: It does not mean that the result is

the TID instance at the right!

prof

S 0.5
A 0.5

8/45

Marginal probabilities vs TID representations

Here’s another example:

TID instance U′ TID instance V Query Q Tuple~t

date prof

04 S 1
04 A 1

date

04 0.5

πprof(U′ ./ V) S

and

A

→ The marginal probability of S is 0.5
→ The marginal probability of A is also 0.5

→ Caution: It does not mean that the result is
the TID instance at the right!

prof

S 0.5
A 0.5

8/45

Marginal probabilities vs TID representations

Here’s another example:

TID instance U′ TID instance V Query Q Tuple~t

date prof

04 S 1
04 A 1

date

04 0.5

πprof(U′ ./ V) S

and

A

→ The marginal probability of S is 0.5
→ The marginal probability of A is also 0.5
→ Caution: It does not mean that the result is

the TID instance at the right!

prof

S 0.5
A 0.5

8/45

Motivation for probabilistic query evaluation

• Answers the intuitive question “what is the probability of this”?
• Often more interesting than the correlations between worlds

→ How to compute these probabilities?

9/45

Motivation for probabilistic query evaluation

• Answers the intuitive question “what is the probability of this”?
• Often more interesting than the correlations between worlds
→ How to compute these probabilities?

9/45

Table of contents

Probabilistic query evaluation

Naive evaluation

Extensional evaluation

Intensional query evaluation

Conclusion

10/45

Naive probabilistic query evaluation

• Compute the probabilistic instance represented by the input
→ Finite number of possible worlds

• Run the query over each possible world
→ Check if the result tuple is in the output

• Sum the probabilities of all worlds that contain the output tuple

11/45

Naive probabilistic query evaluation

• Compute the probabilistic instance represented by the input
→ Finite number of possible worlds

• Run the query over each possible world
→ Check if the result tuple is in the output

• Sum the probabilities of all worlds that contain the output tuple

11/45

Naive probabilistic query evaluation

• Compute the probabilistic instance represented by the input
→ Finite number of possible worlds

• Run the query over each possible world
→ Check if the result tuple is in the output

• Sum the probabilities of all worlds that contain the output tuple

11/45

Naive probabilistic query evaluation example

TID instance U Query Q Tuple~t

date prof

04 S 0.8
04 A 0.2

πprof(U) S

Probabilistic relation Q(U):

prof

S
A

prof

S
A

prof

S
A

prof

S
A

0.8× 0.2 (1− 0.8)× 0.2 0.8× (1− 0.2) (1− 0.8)× (1− 0.2)

Total probability that~t is in Q(U): 0.8× 0.2+ 0.8× (1− 0.2) = 0.8

12/45

Naive probabilistic query evaluation example

TID instance U Query Q Tuple~t

date prof

04 S 0.8
04 A 0.2

πprof(U) S

Probabilistic relation Q(U):

prof

S
A

prof

S
A

prof

S
A

prof

S
A

0.8× 0.2 (1− 0.8)× 0.2 0.8× (1− 0.2) (1− 0.8)× (1− 0.2)

Total probability that~t is in Q(U): 0.8× 0.2+ 0.8× (1− 0.2) = 0.8

12/45

Naive probabilistic query evaluation example

TID instance U Query Q Tuple~t

date prof

04 S 0.8
04 A 0.2

πprof(U) S

Probabilistic relation Q(U):

prof

S
A

prof

S
A

prof

S
A

prof

S
A

0.8× 0.2 (1− 0.8)× 0.2 0.8× (1− 0.2) (1− 0.8)× (1− 0.2)

Total probability that~t is in Q(U): 0.8× 0.2+ 0.8× (1− 0.2) = 0.8
12/45

Naive evaluation advantages and drawbacks

• Naive evaluation is always possible

• However, it takes exponential time in general
→ Even if the query output has few possible worlds!
→ Feasible if the input has few possible worlds (few tuples)

• Probabilistic query evaluation is computationally intractable
so it is unlikely that we can beat naive evaluation in general
→ More e�cient methods for special cases

13/45

Naive evaluation advantages and drawbacks

• Naive evaluation is always possible

• However, it takes exponential time in general
→ Even if the query output has few possible worlds!
→ Feasible if the input has few possible worlds (few tuples)

• Probabilistic query evaluation is computationally intractable
so it is unlikely that we can beat naive evaluation in general
→ More e�cient methods for special cases

13/45

Naive evaluation advantages and drawbacks

• Naive evaluation is always possible

• However, it takes exponential time in general
→ Even if the query output has few possible worlds!
→ Feasible if the input has few possible worlds (few tuples)

• Probabilistic query evaluation is computationally intractable
so it is unlikely that we can beat naive evaluation in general

→ More e�cient methods for special cases

13/45

Naive evaluation advantages and drawbacks

• Naive evaluation is always possible

• However, it takes exponential time in general
→ Even if the query output has few possible worlds!
→ Feasible if the input has few possible worlds (few tuples)

• Probabilistic query evaluation is computationally intractable
so it is unlikely that we can beat naive evaluation in general
→ More e�cient methods for special cases

13/45

Table of contents

Probabilistic query evaluation

Naive evaluation

Extensional evaluation

Intensional query evaluation

Conclusion

14/45

Extensional evaluation idea

• Sometimes we can compute the probabilities at each step:

U

date prof

04 S 0.8
04 A 0.2

V

student

1 0.4
2 0.6

U× V

date prof student

04 S 1

0.8× 0.4

04 S 2

0.8× 0.6

04 A 1

0.2× 0.4

04 A 2

0.2× 0.6

15/45

Extensional evaluation idea

• Sometimes we can compute the probabilities at each step:

U

date prof

04 S 0.8
04 A 0.2

V

student

1 0.4
2 0.6

U× V

date prof student

04 S 1

0.8× 0.4

04 S 2

0.8× 0.6

04 A 1

0.2× 0.4

04 A 2

0.2× 0.6

15/45

Extensional evaluation idea

• Sometimes we can compute the probabilities at each step:

U

date prof

04 S 0.8
04 A 0.2

V

student

1 0.4
2 0.6

U× V

date prof student

04 S 1

0.8× 0.4

04 S 2

0.8× 0.6

04 A 1

0.2× 0.4

04 A 2

0.2× 0.6

15/45

Extensional evaluation idea

• Sometimes we can compute the probabilities at each step:

U

date prof

04 S 0.8
04 A 0.2

V

student

1 0.4
2 0.6

U× V

date prof student

04 S 1

0.8× 0.4

04 S 2

0.8× 0.6

04 A 1

0.2× 0.4

04 A 2

0.2× 0.6

15/45

Extensional evaluation idea

• Sometimes we can compute the probabilities at each step:

U

date prof

04 S 0.8
04 A 0.2

V

student

1 0.4
2 0.6

U× V

date prof student

04 S 1 0.8× 0.4
04 S 2

0.8× 0.6

04 A 1

0.2× 0.4

04 A 2

0.2× 0.6

15/45

Extensional evaluation idea

• Sometimes we can compute the probabilities at each step:

U

date prof

04 S 0.8
04 A 0.2

V

student

1 0.4
2 0.6

U× V

date prof student

04 S 1 0.8× 0.4
04 S 2 0.8× 0.6
04 A 1

0.2× 0.4

04 A 2

0.2× 0.6

15/45

Extensional evaluation idea

• Sometimes we can compute the probabilities at each step:

U

date prof

04 S 0.8
04 A 0.2

V

student

1 0.4
2 0.6

U× V

date prof student

04 S 1 0.8× 0.4
04 S 2 0.8× 0.6
04 A 1 0.2× 0.4
04 A 2

0.2× 0.6

15/45

Extensional evaluation idea

• Sometimes we can compute the probabilities at each step:

U

date prof

04 S 0.8
04 A 0.2

V

student

1 0.4
2 0.6

U× V

date prof student

04 S 1 0.8× 0.4
04 S 2 0.8× 0.6
04 A 1 0.2× 0.4
04 A 2 0.2× 0.6

15/45

Query independence

• We say that queries Q and Q′ are syntactically independent
if no relation is used in both Q and Q′

→ Example: Q = R ./ S and Q′ = πa(T × U)
→ Intuition: the tuples in Q and Q′ are independent

• Independent join: if Q and Q′ are syntactically independent then
we can compute Q ./ Q′ and Q× Q′: multiply the probabilities

U

date pr

04 S 0.8
04 A 0.2

V

pr st

A 1 0.4
S 2 0.6

U ./ V

date pr st

04 S 2

0.8× 0.6

04 A 1

0.2× 0.4

16/45

Query independence

• We say that queries Q and Q′ are syntactically independent
if no relation is used in both Q and Q′

→ Example: Q = R ./ S and Q′ = πa(T × U)
→ Intuition: the tuples in Q and Q′ are independent

• Independent join: if Q and Q′ are syntactically independent then
we can compute Q ./ Q′ and Q× Q′: multiply the probabilities

U

date pr

04 S 0.8
04 A 0.2

V

pr st

A 1 0.4
S 2 0.6

U ./ V

date pr st

04 S 2

0.8× 0.6

04 A 1

0.2× 0.4

16/45

Query independence

• We say that queries Q and Q′ are syntactically independent
if no relation is used in both Q and Q′

→ Example: Q = R ./ S and Q′ = πa(T × U)
→ Intuition: the tuples in Q and Q′ are independent

• Independent join: if Q and Q′ are syntactically independent then
we can compute Q ./ Q′ and Q× Q′: multiply the probabilities

U

date pr

04 S 0.8
04 A 0.2

V

pr st

A 1 0.4
S 2 0.6

U ./ V

date pr st

04 S 2

0.8× 0.6

04 A 1

0.2× 0.4

16/45

Query independence

• We say that queries Q and Q′ are syntactically independent
if no relation is used in both Q and Q′

→ Example: Q = R ./ S and Q′ = πa(T × U)
→ Intuition: the tuples in Q and Q′ are independent

• Independent join: if Q and Q′ are syntactically independent then
we can compute Q ./ Q′ and Q× Q′: multiply the probabilities

U

date pr

04 S 0.8
04 A 0.2

V

pr st

A 1 0.4
S 2 0.6

U ./ V

date pr st

04 S 2

0.8× 0.6

04 A 1

0.2× 0.4

16/45

Query independence

• We say that queries Q and Q′ are syntactically independent
if no relation is used in both Q and Q′

→ Example: Q = R ./ S and Q′ = πa(T × U)
→ Intuition: the tuples in Q and Q′ are independent

• Independent join: if Q and Q′ are syntactically independent then
we can compute Q ./ Q′ and Q× Q′: multiply the probabilities

U

date pr

04 S 0.8
04 A 0.2

V

pr st

A 1 0.4
S 2 0.6

U ./ V

date pr st

04 S 2

0.8× 0.6

04 A 1

0.2× 0.4

16/45

Query independence

• We say that queries Q and Q′ are syntactically independent
if no relation is used in both Q and Q′

→ Example: Q = R ./ S and Q′ = πa(T × U)
→ Intuition: the tuples in Q and Q′ are independent

• Independent join: if Q and Q′ are syntactically independent then
we can compute Q ./ Q′ and Q× Q′: multiply the probabilities

U

date pr

04 S 0.8
04 A 0.2

V

pr st

A 1 0.4
S 2 0.6

U ./ V

date pr st

04 S 2 0.8× 0.6
04 A 1

0.2× 0.4

16/45

Query independence

• We say that queries Q and Q′ are syntactically independent
if no relation is used in both Q and Q′

→ Example: Q = R ./ S and Q′ = πa(T × U)
→ Intuition: the tuples in Q and Q′ are independent

• Independent join: if Q and Q′ are syntactically independent then
we can compute Q ./ Q′ and Q× Q′: multiply the probabilities

U

date pr

04 S 0.8
04 A 0.2

V

pr st

A 1 0.4
S 2 0.6

U ./ V

date pr st

04 S 2 0.8× 0.6
04 A 1 0.2× 0.4

16/45

More query independence

• Independent union: for syntactically independent Q and Q′

we can compute Q ∪ Q′ using the rule for independent OR

U

date prof

04 S 0.8
04 A 0.2

V

date prof

04 A 0.4
11 A 0.2

U ∪ V

date prof

04 S

0.8

04 A

1− (1− 0.2)× (1− 0.4)

11 A

0.2

17/45

More query independence

• Independent union: for syntactically independent Q and Q′

we can compute Q ∪ Q′ using the rule for independent OR

U

date prof

04 S 0.8
04 A 0.2

V

date prof

04 A 0.4
11 A 0.2

U ∪ V

date prof

04 S

0.8

04 A

1− (1− 0.2)× (1− 0.4)

11 A

0.2

17/45

More query independence

• Independent union: for syntactically independent Q and Q′

we can compute Q ∪ Q′ using the rule for independent OR

U

date prof

04 S 0.8
04 A 0.2

V

date prof

04 A 0.4
11 A 0.2

U ∪ V

date prof

04 S

0.8

04 A

1− (1− 0.2)× (1− 0.4)

11 A

0.2

17/45

More query independence

• Independent union: for syntactically independent Q and Q′

we can compute Q ∪ Q′ using the rule for independent OR

U

date prof

04 S 0.8
04 A 0.2

V

date prof

04 A 0.4
11 A 0.2

U ∪ V

date prof

04 S

0.8

04 A

1− (1− 0.2)× (1− 0.4)

11 A

0.2

17/45

More query independence

• Independent union: for syntactically independent Q and Q′

we can compute Q ∪ Q′ using the rule for independent OR

U

date prof

04 S 0.8
04 A 0.2

V

date prof

04 A 0.4
11 A 0.2

U ∪ V

date prof

04 S 0.8
04 A

1− (1− 0.2)× (1− 0.4)

11 A

0.2

17/45

More query independence

• Independent union: for syntactically independent Q and Q′

we can compute Q ∪ Q′ using the rule for independent OR

U

date prof

04 S 0.8
04 A 0.2

V

date prof

04 A 0.4
11 A 0.2

U ∪ V

date prof

04 S 0.8
04 A 1− (1− 0.2)× (1− 0.4)
11 A

0.2

17/45

More query independence

• Independent union: for syntactically independent Q and Q′

we can compute Q ∪ Q′ using the rule for independent OR

U

date prof

04 S 0.8
04 A 0.2

V

date prof

04 A 0.4
11 A 0.2

U ∪ V

date prof

04 S 0.8
04 A 1− (1− 0.2)× (1− 0.4)
11 A 0.2

17/45

Selection

Selection can just be applied in the straightforward way:

U

date prof

04 S 0.8
04 A 0.2

σprof=“S”(U)

date prof

04 S 0.8

18/45

Selection

Selection can just be applied in the straightforward way:

U

date prof

04 S 0.8
04 A 0.2

σprof=“S”(U)

date prof

04 S 0.8

18/45

Selection

Selection can just be applied in the straightforward way:

U

date prof

04 S 0.8
04 A 0.2

σprof=“S”(U)

date prof

04 S 0.8

18/45

Selection

Selection can just be applied in the straightforward way:

U

date prof

04 S 0.8
04 A 0.2

σprof=“S”(U)

date prof

04 S 0.8

18/45

Independent projection

• Self-join-free conjunctive query: a join (./) of projections (π)
that does not use the same relation name twice:
→ Example: Q = R ./ S ./ πa(T)

• A separator is an attribute that occurs in all tables of the join:
→ Example: if R(a,b), S(a), T(a, c) then a is a separator of Q

• If Q is a self-join-free conjunctive query and a is a separator
then π−a (projecting away the attribute a)
can be computed using independent OR

19/45

Independent projection

• Self-join-free conjunctive query: a join (./) of projections (π)
that does not use the same relation name twice:
→ Example: Q = R ./ S ./ πa(T)

• A separator is an attribute that occurs in all tables of the join:
→ Example: if R(a,b), S(a), T(a, c) then a is a separator of Q

• If Q is a self-join-free conjunctive query and a is a separator
then π−a (projecting away the attribute a)
can be computed using independent OR

19/45

Independent projection

• Self-join-free conjunctive query: a join (./) of projections (π)
that does not use the same relation name twice:
→ Example: Q = R ./ S ./ πa(T)

• A separator is an attribute that occurs in all tables of the join:
→ Example: if R(a,b), S(a), T(a, c) then a is a separator of Q

• If Q is a self-join-free conjunctive query and a is a separator
then π−a (projecting away the attribute a)
can be computed using independent OR

19/45

Independent projection example

U

date prof

04 S 0.8
04 A 0.2
11 S 0.4
11 A 0.6

πdate(U)

date

04

1− (1− 0.8)× (1− 0.2)

11

1− (1− 0.4)× (1− 0.6)

20/45

Independent projection example

U

date prof

04 S 0.8
04 A 0.2
11 S 0.4
11 A 0.6

πdate(U)

date

04

1− (1− 0.8)× (1− 0.2)

11

1− (1− 0.4)× (1− 0.6)

20/45

Independent projection example

U

date prof

04 S 0.8
04 A 0.2
11 S 0.4
11 A 0.6

πdate(U)

date

04 1− (1− 0.8)× (1− 0.2)
11

1− (1− 0.4)× (1− 0.6)

20/45

Independent projection example

U

date prof

04 S 0.8
04 A 0.2
11 S 0.4
11 A 0.6

πdate(U)

date

04 1− (1− 0.8)× (1− 0.2)
11 1− (1− 0.4)× (1− 0.6)

20/45

Another independent projection example

Consider the two tables:

U

date prof

04 S 1/2

V

prof cause

S illness 1/2
S bahamas 1/2

• Query: Q(U, V) = πdate,prof(U ./ V)
• Can be rewritten as: U ./ π−cause(V)

π−cause(V)

prof

S 3/4

U ./ π−cause(V)

date prof

04 S 3/8

21/45

Another independent projection example

Consider the two tables:

U

date prof

04 S 1/2

V

prof cause

S illness 1/2
S bahamas 1/2

• Query: Q(U, V) = πdate,prof(U ./ V)
• Can be rewritten as: U ./ π−cause(V)

π−cause(V)

prof

S 3/4

U ./ π−cause(V)

date prof

04 S 3/8

21/45

Another independent projection example

Consider the two tables:

U

date prof

04 S 1/2

V

prof cause

S illness 1/2
S bahamas 1/2

• Query: Q(U, V) = πdate,prof(U ./ V)
• Can be rewritten as: U ./ π−cause(V)

π−cause(V)

prof

S 3/4

U ./ π−cause(V)

date prof

04 S 3/8

21/45

Another independent projection example

Consider the two tables:

U

date prof

04 S 1/2

V

prof cause

S illness 1/2
S bahamas 1/2

• Query: Q(U, V) = πdate,prof(U ./ V)
• Can be rewritten as: U ./ π−cause(V)

π−cause(V)

prof

S 3/4

U ./ π−cause(V)

date prof

04 S 3/8

21/45

The choice of plan matters!

• Query: Q(U, V) = πdate,prof(U ./ V)
• Can be rewritten as π−cause(U ./ V) instead of U ./ π−cause(V)

U

date prof

04 S 1/2

V

prof cause

S illness 1/2
S bahamas 1/2

U ./ V

date prof cause

04 S illness

1/4

04 S bahamas

1/4

π−cause(U ./ V)

date prof

04 S

7/16 ??

→ The last projection is not independent, so incorrect result!

22/45

The choice of plan matters!

• Query: Q(U, V) = πdate,prof(U ./ V)
• Can be rewritten as π−cause(U ./ V) instead of U ./ π−cause(V)

U

date prof

04 S 1/2

V

prof cause

S illness 1/2
S bahamas 1/2

U ./ V

date prof cause

04 S illness

1/4

04 S bahamas

1/4

π−cause(U ./ V)

date prof

04 S

7/16 ??

→ The last projection is not independent, so incorrect result!

22/45

The choice of plan matters!

• Query: Q(U, V) = πdate,prof(U ./ V)
• Can be rewritten as π−cause(U ./ V) instead of U ./ π−cause(V)

U

date prof

04 S 1/2

V

prof cause

S illness 1/2
S bahamas 1/2

U ./ V

date prof cause

04 S illness

1/4

04 S bahamas

1/4

π−cause(U ./ V)

date prof

04 S

7/16 ??

→ The last projection is not independent, so incorrect result!

22/45

The choice of plan matters!

• Query: Q(U, V) = πdate,prof(U ./ V)
• Can be rewritten as π−cause(U ./ V) instead of U ./ π−cause(V)

U

date prof

04 S 1/2

V

prof cause

S illness 1/2
S bahamas 1/2

U ./ V

date prof cause

04 S illness

1/4

04 S bahamas

1/4

π−cause(U ./ V)

date prof

04 S

7/16 ??

→ The last projection is not independent, so incorrect result!

22/45

The choice of plan matters!

• Query: Q(U, V) = πdate,prof(U ./ V)
• Can be rewritten as π−cause(U ./ V) instead of U ./ π−cause(V)

U

date prof

04 S 1/2

V

prof cause

S illness 1/2
S bahamas 1/2

U ./ V

date prof cause

04 S illness 1/4
04 S bahamas

1/4

π−cause(U ./ V)

date prof

04 S

7/16 ??

→ The last projection is not independent, so incorrect result!

22/45

The choice of plan matters!

• Query: Q(U, V) = πdate,prof(U ./ V)
• Can be rewritten as π−cause(U ./ V) instead of U ./ π−cause(V)

U

date prof

04 S 1/2

V

prof cause

S illness 1/2
S bahamas 1/2

U ./ V

date prof cause

04 S illness 1/4
04 S bahamas 1/4

π−cause(U ./ V)

date prof

04 S

7/16 ??

→ The last projection is not independent, so incorrect result!

22/45

The choice of plan matters!

• Query: Q(U, V) = πdate,prof(U ./ V)
• Can be rewritten as π−cause(U ./ V) instead of U ./ π−cause(V)

U

date prof

04 S 1/2

V

prof cause

S illness 1/2
S bahamas 1/2

U ./ V

date prof cause

04 S illness 1/4
04 S bahamas 1/4

π−cause(U ./ V)

date prof

04 S

7/16 ??

→ The last projection is not independent, so incorrect result!

22/45

The choice of plan matters!

• Query: Q(U, V) = πdate,prof(U ./ V)
• Can be rewritten as π−cause(U ./ V) instead of U ./ π−cause(V)

U

date prof

04 S 1/2

V

prof cause

S illness 1/2
S bahamas 1/2

U ./ V

date prof cause

04 S illness 1/4
04 S bahamas 1/4

π−cause(U ./ V)

date prof

04 S 7/16 ??

→ The last projection is not independent, so incorrect result!

22/45

The choice of plan matters!

• Query: Q(U, V) = πdate,prof(U ./ V)
• Can be rewritten as π−cause(U ./ V) instead of U ./ π−cause(V)

U

date prof

04 S 1/2

V

prof cause

S illness 1/2
S bahamas 1/2

U ./ V

date prof cause

04 S illness 1/4
04 S bahamas 1/4

π−cause(U ./ V)

date prof

04 S 7/16 ??

→ The last projection is not independent, so incorrect result! 22/45

Safe plans

• A safe plan for a query Q is a way to implement Q
using the extensional operators:

• It must use them correctly, e.g., respecting independence
• It must be equivalent to the desired query Q

→ With a safe plan, we can compute the marginal probability
of all query results

23/45

Safe plans

• A safe plan for a query Q is a way to implement Q
using the extensional operators:

• It must use them correctly, e.g., respecting independence

• It must be equivalent to the desired query Q

→ With a safe plan, we can compute the marginal probability
of all query results

23/45

Safe plans

• A safe plan for a query Q is a way to implement Q
using the extensional operators:

• It must use them correctly, e.g., respecting independence
• It must be equivalent to the desired query Q

→ With a safe plan, we can compute the marginal probability
of all query results

23/45

Safe plans

• A safe plan for a query Q is a way to implement Q
using the extensional operators:

• It must use them correctly, e.g., respecting independence
• It must be equivalent to the desired query Q

→ With a safe plan, we can compute the marginal probability
of all query results

23/45

Do all queries have a safe plan?

• Relations R(a), S(a,b), T(b)

• Query Q = π−a(π−b(R ./ S ./ T))

• Does Q have a safe plan?
• If we do the joins �rst then no projection is independent
• If we write Q as π−a(R ./ π−b(S ./ T)))
then the projection is not safe

• Same problem for π−b(π−a(R ./ S) ./ T)

→ In fact Q is intractable and it has no safe plan

24/45

Do all queries have a safe plan?

• Relations R(a), S(a,b), T(b)

• Query Q = π−a(π−b(R ./ S ./ T))

• Does Q have a safe plan?
• If we do the joins �rst then no projection is independent
• If we write Q as π−a(R ./ π−b(S ./ T)))
then the projection is not safe

• Same problem for π−b(π−a(R ./ S) ./ T)

→ In fact Q is intractable and it has no safe plan

24/45

Do all queries have a safe plan?

• Relations R(a), S(a,b), T(b)

• Query Q = π−a(π−b(R ./ S ./ T))

• Does Q have a safe plan?

• If we do the joins �rst then no projection is independent
• If we write Q as π−a(R ./ π−b(S ./ T)))
then the projection is not safe

• Same problem for π−b(π−a(R ./ S) ./ T)

→ In fact Q is intractable and it has no safe plan

24/45

Do all queries have a safe plan?

• Relations R(a), S(a,b), T(b)

• Query Q = π−a(π−b(R ./ S ./ T))

• Does Q have a safe plan?
• If we do the joins �rst then no projection is independent

• If we write Q as π−a(R ./ π−b(S ./ T)))
then the projection is not safe

• Same problem for π−b(π−a(R ./ S) ./ T)

→ In fact Q is intractable and it has no safe plan

24/45

Do all queries have a safe plan?

• Relations R(a), S(a,b), T(b)

• Query Q = π−a(π−b(R ./ S ./ T))

• Does Q have a safe plan?
• If we do the joins �rst then no projection is independent
• If we write Q as π−a(R ./ π−b(S ./ T)))
then the projection is not safe

• Same problem for π−b(π−a(R ./ S) ./ T)

→ In fact Q is intractable and it has no safe plan

24/45

Do all queries have a safe plan?

• Relations R(a), S(a,b), T(b)

• Query Q = π−a(π−b(R ./ S ./ T))

• Does Q have a safe plan?
• If we do the joins �rst then no projection is independent
• If we write Q as π−a(R ./ π−b(S ./ T)))
then the projection is not safe

• Same problem for π−b(π−a(R ./ S) ./ T)

→ In fact Q is intractable and it has no safe plan

24/45

Do all queries have a safe plan?

• Relations R(a), S(a,b), T(b)

• Query Q = π−a(π−b(R ./ S ./ T))

• Does Q have a safe plan?
• If we do the joins �rst then no projection is independent
• If we write Q as π−a(R ./ π−b(S ./ T)))
then the projection is not safe

• Same problem for π−b(π−a(R ./ S) ./ T)

→ In fact Q is intractable and it has no safe plan

24/45

Extensional query evaluation summary

• Extensional query evaluation:
• Express the query as a safe plan with the extensional operators
• Compute the query results and their probabilities via the plan
• The probabilities are correct because the plan is safe

• Summary of safe operators:
• Product and join of syntactically independent queries

→ Product of independent probabilities
• Union of syntactically independent queries

→ Independent OR of the probabilities
• Projecting away a separator attribute

→ Independent OR because the tuples in each group are independent
• Applying selection in the straightforward way
• Also other rules: negation, inclusion-exclusion, etc.

→ Not all queries have safe plans

25/45

Extensional query evaluation summary

• Extensional query evaluation:
• Express the query as a safe plan with the extensional operators
• Compute the query results and their probabilities via the plan
• The probabilities are correct because the plan is safe

• Summary of safe operators:
• Product and join of syntactically independent queries

→ Product of independent probabilities
• Union of syntactically independent queries

→ Independent OR of the probabilities
• Projecting away a separator attribute

→ Independent OR because the tuples in each group are independent
• Applying selection in the straightforward way
• Also other rules: negation, inclusion-exclusion, etc.

→ Not all queries have safe plans

25/45

Extensional query evaluation summary

• Extensional query evaluation:
• Express the query as a safe plan with the extensional operators
• Compute the query results and their probabilities via the plan
• The probabilities are correct because the plan is safe

• Summary of safe operators:
• Product and join of syntactically independent queries

→ Product of independent probabilities
• Union of syntactically independent queries

→ Independent OR of the probabilities
• Projecting away a separator attribute

→ Independent OR because the tuples in each group are independent
• Applying selection in the straightforward way
• Also other rules: negation, inclusion-exclusion, etc.

→ Not all queries have safe plans
25/45

Table of contents

Probabilistic query evaluation

Naive evaluation

Extensional evaluation

Intensional query evaluation

Conclusion

26/45

Idea of intensional query evaluation

• We cannot always compute directly the probabilities of results
• Idea:

• Compute a lineage expression for each output tuple
describing the possible worlds where it appears

• Compute the probability of these lineage expressions

• Advantages:
• Intensional evaluation is always possible (but not always e�cient)
• Intensional evaluation is more modular:

→ Compute the lineage expression (no probabilities)
→ Use any model counting method or software

• Disadvantages:
• Two steps: (1.) compute the lineage; (2.) compute the probability
• The lineage expression loses information about the query

27/45

Idea of intensional query evaluation

• We cannot always compute directly the probabilities of results
• Idea:

• Compute a lineage expression for each output tuple
describing the possible worlds where it appears

• Compute the probability of these lineage expressions

• Advantages:
• Intensional evaluation is always possible (but not always e�cient)
• Intensional evaluation is more modular:

→ Compute the lineage expression (no probabilities)
→ Use any model counting method or software

• Disadvantages:
• Two steps: (1.) compute the lineage; (2.) compute the probability
• The lineage expression loses information about the query

27/45

Idea of intensional query evaluation

• We cannot always compute directly the probabilities of results
• Idea:

• Compute a lineage expression for each output tuple
describing the possible worlds where it appears

• Compute the probability of these lineage expressions

• Advantages:
• Intensional evaluation is always possible (but not always e�cient)
• Intensional evaluation is more modular:

→ Compute the lineage expression (no probabilities)
→ Use any model counting method or software

• Disadvantages:
• Two steps: (1.) compute the lineage; (2.) compute the probability
• The lineage expression loses information about the query

27/45

Reminder: pc-tables

Remember that a TID is a special case of a pc-table:

U

date prof x1 : 0.8, x2 : 0.2

04 S x1
04 A x2

Remember that pc-tables are a strong representation system (same
rules as for pc-tables for relational algebra operators)

28/45

pc-table query example

U

date prof x1 : 0.8, x2 : 0.2

04 S x1
04 A x2

πdate(U)

date x1 : 0.8, x2 : 0.2

04 x1 ∨ x2

29/45

pc-table query example

U

date prof x1 : 0.8, x2 : 0.2

04 S x1
04 A x2

πdate(U)

date x1 : 0.8, x2 : 0.2

04 x1 ∨ x2

29/45

Lineage expression

πdate(U)

date x1 : 0.8, x2 : 0.2

04 x1 ∨ x2

• The lineage expression x1 ∨ x2 describes the possible worlds
where the tuple 04 appears.

• The probability that x1 ∨ x2 is true
is exactly the probability that this tuple is in the result

30/45

Lineage expression

πdate(U)

date x1 : 0.8, x2 : 0.2

04 x1 ∨ x2

• The lineage expression x1 ∨ x2 describes the possible worlds
where the tuple 04 appears.

• The probability that x1 ∨ x2 is true
is exactly the probability that this tuple is in the result

30/45

Intensional query evaluation

• Translate the TID to a pc-table

• Evaluate the query on the pc-table using c-table rules

• Compute the probability P(φ) of the lineage expression φ
of the output tuple under consideration

→ We have reduced probabilistic query evaluation
to computing the probability that a Boolean formula is true

31/45

Intensional query evaluation

• Translate the TID to a pc-table

• Evaluate the query on the pc-table using c-table rules

• Compute the probability P(φ) of the lineage expression φ
of the output tuple under consideration

→ We have reduced probabilistic query evaluation
to computing the probability that a Boolean formula is true

31/45

Intensional query evaluation

• Translate the TID to a pc-table

• Evaluate the query on the pc-table using c-table rules

• Compute the probability P(φ) of the lineage expression φ
of the output tuple under consideration

→ We have reduced probabilistic query evaluation
to computing the probability that a Boolean formula is true

31/45

Intensional query evaluation

• Translate the TID to a pc-table

• Evaluate the query on the pc-table using c-table rules

• Compute the probability P(φ) of the lineage expression φ
of the output tuple under consideration

→ We have reduced probabilistic query evaluation
to computing the probability that a Boolean formula is true

31/45

How to compute the probability of a lineage expression?

Many ways to compute the probability P(φ):

• Naive method: enumerate all possibilities (exponential)

• Use some simple intensional rules
→ e.g., P(φ(x, y, z) ∧ ψ(x′, y′, z′)) = P(φ(x, y, z))× P(ψ(x′, y′, z′))

thanks to independence

• Compile the lineage expression in a tractable formalism
• read-once formulas
• tractable circuit classes
• binary decision diagrams

• Approximate the probability of the lineage expression

• Use an external weighted model counter

32/45

How to compute the probability of a lineage expression?

Many ways to compute the probability P(φ):

• Naive method: enumerate all possibilities (exponential)

• Use some simple intensional rules
→ e.g., P(φ(x, y, z) ∧ ψ(x′, y′, z′)) = P(φ(x, y, z))× P(ψ(x′, y′, z′))

thanks to independence

• Compile the lineage expression in a tractable formalism
• read-once formulas
• tractable circuit classes
• binary decision diagrams

• Approximate the probability of the lineage expression

• Use an external weighted model counter

32/45

How to compute the probability of a lineage expression?

Many ways to compute the probability P(φ):

• Naive method: enumerate all possibilities (exponential)

• Use some simple intensional rules
→ e.g., P(φ(x, y, z) ∧ ψ(x′, y′, z′)) = P(φ(x, y, z))× P(ψ(x′, y′, z′))

thanks to independence

• Compile the lineage expression in a tractable formalism
• read-once formulas
• tractable circuit classes
• binary decision diagrams

• Approximate the probability of the lineage expression

• Use an external weighted model counter

32/45

How to compute the probability of a lineage expression?

Many ways to compute the probability P(φ):

• Naive method: enumerate all possibilities (exponential)

• Use some simple intensional rules
→ e.g., P(φ(x, y, z) ∧ ψ(x′, y′, z′)) = P(φ(x, y, z))× P(ψ(x′, y′, z′))

thanks to independence

• Compile the lineage expression in a tractable formalism
• read-once formulas
• tractable circuit classes
• binary decision diagrams

• Approximate the probability of the lineage expression

• Use an external weighted model counter

32/45

How to compute the probability of a lineage expression?

Many ways to compute the probability P(φ):

• Naive method: enumerate all possibilities (exponential)

• Use some simple intensional rules
→ e.g., P(φ(x, y, z) ∧ ψ(x′, y′, z′)) = P(φ(x, y, z))× P(ψ(x′, y′, z′))

thanks to independence

• Compile the lineage expression in a tractable formalism
• read-once formulas
• tractable circuit classes
• binary decision diagrams

• Approximate the probability of the lineage expression

• Use an external weighted model counter

32/45

Naive evaluation

Example: formula φ = x1 ∨ x2 with P(x1 = 1) = 0.8 and P(x2 = 1) = 0.2

• If x1 is true and x2 is true, the formula is true
→ Probability 0.8× 0.2

• If x1 is true and x2 is false, the formula is true
→ Probability 0.8× (1− 0.2)

• If x1 is false and x2 is true, the formula is true
→ Probability (1− 0.8)× 0.2

• If x1 is false and x2 is false, the formula is false
→ Probability (1− 0.8)× (1− 0.2)

→ P(φ) = 0.8× 0.2+ 0.8× (1− 0.2) + (1− 0.8)× 0.2 = 0.84

33/45

Naive evaluation

Example: formula φ = x1 ∨ x2 with P(x1 = 1) = 0.8 and P(x2 = 1) = 0.2

• If x1 is true and x2 is true, the formula is true
→ Probability 0.8× 0.2

• If x1 is true and x2 is false, the formula is true
→ Probability 0.8× (1− 0.2)

• If x1 is false and x2 is true, the formula is true
→ Probability (1− 0.8)× 0.2

• If x1 is false and x2 is false, the formula is false
→ Probability (1− 0.8)× (1− 0.2)

→ P(φ) = 0.8× 0.2+ 0.8× (1− 0.2) + (1− 0.8)× 0.2 = 0.84

33/45

Naive evaluation

Example: formula φ = x1 ∨ x2 with P(x1 = 1) = 0.8 and P(x2 = 1) = 0.2

• If x1 is true and x2 is true, the formula is true
→ Probability 0.8× 0.2

• If x1 is true and x2 is false, the formula is true
→ Probability 0.8× (1− 0.2)

• If x1 is false and x2 is true, the formula is true
→ Probability (1− 0.8)× 0.2

• If x1 is false and x2 is false, the formula is false
→ Probability (1− 0.8)× (1− 0.2)

→ P(φ) = 0.8× 0.2+ 0.8× (1− 0.2) + (1− 0.8)× 0.2 = 0.84

33/45

Naive evaluation

Example: formula φ = x1 ∨ x2 with P(x1 = 1) = 0.8 and P(x2 = 1) = 0.2

• If x1 is true and x2 is true, the formula is true
→ Probability 0.8× 0.2

• If x1 is true and x2 is false, the formula is true
→ Probability 0.8× (1− 0.2)

• If x1 is false and x2 is true, the formula is true
→ Probability (1− 0.8)× 0.2

• If x1 is false and x2 is false, the formula is false
→ Probability (1− 0.8)× (1− 0.2)

→ P(φ) = 0.8× 0.2+ 0.8× (1− 0.2) + (1− 0.8)× 0.2 = 0.84

33/45

Naive evaluation

Example: formula φ = x1 ∨ x2 with P(x1 = 1) = 0.8 and P(x2 = 1) = 0.2

• If x1 is true and x2 is true, the formula is true
→ Probability 0.8× 0.2

• If x1 is true and x2 is false, the formula is true
→ Probability 0.8× (1− 0.2)

• If x1 is false and x2 is true, the formula is true
→ Probability (1− 0.8)× 0.2

• If x1 is false and x2 is false, the formula is false
→ Probability (1− 0.8)× (1− 0.2)

→ P(φ) = 0.8× 0.2+ 0.8× (1− 0.2) + (1− 0.8)× 0.2

= 0.84

33/45

Naive evaluation

Example: formula φ = x1 ∨ x2 with P(x1 = 1) = 0.8 and P(x2 = 1) = 0.2

• If x1 is true and x2 is true, the formula is true
→ Probability 0.8× 0.2

• If x1 is true and x2 is false, the formula is true
→ Probability 0.8× (1− 0.2)

• If x1 is false and x2 is true, the formula is true
→ Probability (1− 0.8)× 0.2

• If x1 is false and x2 is false, the formula is false
→ Probability (1− 0.8)× (1− 0.2)

→ P(φ) = 0.8× 0.2+ 0.8× (1− 0.2) + (1− 0.8)× 0.2 = 0.84

33/45

Intensional rule de�nitions

• φ and ψ are syntactically independent
if they have no variables in common
→ E.g., φ(x, y, z) and ψ(x′, y′, z′)

• φ and ψ are mutually exclusive if φ ∧ ψ is unsatis�able
→ E.g., φ = x ∧ y and ψ = ¬x ∧ (y ∨ z)

• φ|x=0 is the result of replacing x by 0 in φ (and likewise forφ|x=1)
→ E.g., for φ = ¬x ∧ (y ∨ z), we haveφ|x=0 = y ∨ z andφ|x=1 = ⊥

34/45

Intensional rule de�nitions

• φ and ψ are syntactically independent
if they have no variables in common
→ E.g., φ(x, y, z) and ψ(x′, y′, z′)

• φ and ψ are mutually exclusive if φ ∧ ψ is unsatis�able
→ E.g., φ = x ∧ y and ψ = ¬x ∧ (y ∨ z)

• φ|x=0 is the result of replacing x by 0 in φ (and likewise forφ|x=1)
→ E.g., for φ = ¬x ∧ (y ∨ z), we haveφ|x=0 = y ∨ z andφ|x=1 = ⊥

34/45

Intensional rule de�nitions

• φ and ψ are syntactically independent
if they have no variables in common
→ E.g., φ(x, y, z) and ψ(x′, y′, z′)

• φ and ψ are mutually exclusive if φ ∧ ψ is unsatis�able
→ E.g., φ = x ∧ y and ψ = ¬x ∧ (y ∨ z)

• φ|x=0 is the result of replacing x by 0 in φ (and likewise forφ|x=1)
→ E.g., for φ = ¬x ∧ (y ∨ z), we haveφ|x=0 = y ∨ z andφ|x=1 = ⊥

34/45

Intensional rules

• Independent AND: if φ and ψ are syntactically independent then:
P(φ ∧ ψ) = P(φ)× P(ψ)

• Independent OR: if φ and ψ are syntactically independent then:
P(φ ∨ ψ) = 1− (1− P(φ))× (1− P(ψ))

• Mutually exclusive OR: if φ and ψ are mutually exclusive then:
P(φ ∨ ψ) = P(φ) + P(ψ)

• Negation: for any φ, we have P(¬φ) = 1− P(φ)

• Shannon expansion: for any φ and variable x, we have:
P(φ) = P(x = 0)× P(φ|x=0) + P(x = 1)× P(φ|x=1)

35/45

Intensional rules

• Independent AND: if φ and ψ are syntactically independent then:
P(φ ∧ ψ) = P(φ)× P(ψ)

• Independent OR: if φ and ψ are syntactically independent then:
P(φ ∨ ψ) = 1− (1− P(φ))× (1− P(ψ))

• Mutually exclusive OR: if φ and ψ are mutually exclusive then:
P(φ ∨ ψ) = P(φ) + P(ψ)

• Negation: for any φ, we have P(¬φ) = 1− P(φ)

• Shannon expansion: for any φ and variable x, we have:
P(φ) = P(x = 0)× P(φ|x=0) + P(x = 1)× P(φ|x=1)

35/45

Intensional rules

• Independent AND: if φ and ψ are syntactically independent then:
P(φ ∧ ψ) = P(φ)× P(ψ)

• Independent OR: if φ and ψ are syntactically independent then:
P(φ ∨ ψ) = 1− (1− P(φ))× (1− P(ψ))

• Mutually exclusive OR: if φ and ψ are mutually exclusive then:
P(φ ∨ ψ) = P(φ) + P(ψ)

• Negation: for any φ, we have P(¬φ) = 1− P(φ)

• Shannon expansion: for any φ and variable x, we have:
P(φ) = P(x = 0)× P(φ|x=0) + P(x = 1)× P(φ|x=1)

35/45

Intensional rules

• Independent AND: if φ and ψ are syntactically independent then:
P(φ ∧ ψ) = P(φ)× P(ψ)

• Independent OR: if φ and ψ are syntactically independent then:
P(φ ∨ ψ) = 1− (1− P(φ))× (1− P(ψ))

• Mutually exclusive OR: if φ and ψ are mutually exclusive then:
P(φ ∨ ψ) = P(φ) + P(ψ)

• Negation: for any φ, we have P(¬φ) = 1− P(φ)

• Shannon expansion: for any φ and variable x, we have:
P(φ) = P(x = 0)× P(φ|x=0) + P(x = 1)× P(φ|x=1)

35/45

Intensional rules

• Independent AND: if φ and ψ are syntactically independent then:
P(φ ∧ ψ) = P(φ)× P(ψ)

• Independent OR: if φ and ψ are syntactically independent then:
P(φ ∨ ψ) = 1− (1− P(φ))× (1− P(ψ))

• Mutually exclusive OR: if φ and ψ are mutually exclusive then:
P(φ ∨ ψ) = P(φ) + P(ψ)

• Negation: for any φ, we have P(¬φ) = 1− P(φ)

• Shannon expansion: for any φ and variable x, we have:
P(φ) = P(x = 0)× P(φ|x=0) + P(x = 1)× P(φ|x=1)

35/45

Application of intensional rules

• We can always compute probabilities with intensional rules
→ But Shannon expansions are costly and may be exponential
• The e�ciency of these rules depends:

• on how the lineage is written
• on the order in which they are applied

• Note that these rules are a bit similar to the extensional rules

36/45

Tractable lineage formalisms

• Read-once formula: each variable occurs at most once
→ If the lineage is written in this way, we can compute the probability

with independent AND, independent OR, negation

• Tractable Boolean circuit representations of lineages

• Tractable representations as Binary decision diagrams

37/45

Tractable lineage formalisms

• Read-once formula: each variable occurs at most once
→ If the lineage is written in this way, we can compute the probability

with independent AND, independent OR, negation

• Tractable Boolean circuit representations of lineages

• Tractable representations as Binary decision diagrams

37/45

Tractable lineage formalisms

• Read-once formula: each variable occurs at most once
→ If the lineage is written in this way, we can compute the probability

with independent AND, independent OR, negation

• Tractable Boolean circuit representations of lineages

• Tractable representations as Binary decision diagrams

37/45

Boolean circuit representations

Circuits are just a way to represent Boolean formulas
while factoring common subexpressions (more concise)

∨

¬

x

∧

y

• Directed acyclic graph of gates

• Output gate:

• Variable gates: x

• Internal gates: ∨ ∧ ¬

• Valuation: function from variables to {0, 1}
Example: ν = {x 7→ 0, y 7→ 1}... mapped to 1

38/45

Boolean circuit representations

Circuits are just a way to represent Boolean formulas
while factoring common subexpressions (more concise)

∨

¬

x

∧

y

• Directed acyclic graph of gates

• Output gate:

• Variable gates: x

• Internal gates: ∨ ∧ ¬

• Valuation: function from variables to {0, 1}
Example: ν = {x 7→ 0, y 7→ 1}...

mapped to 1

38/45

Boolean circuit representations

Circuits are just a way to represent Boolean formulas
while factoring common subexpressions (more concise)

∨

¬

x

∧

y

• Directed acyclic graph of gates

• Output gate:

• Variable gates: x

• Internal gates: ∨ ∧ ¬

• Valuation: function from variables to {0, 1}
Example: ν = {x 7→ 0, y 7→ 1}...

mapped to 1

38/45

Boolean circuit representations

Circuits are just a way to represent Boolean formulas
while factoring common subexpressions (more concise)

∨

¬

x

∧

y

• Directed acyclic graph of gates

• Output gate:

• Variable gates: x

• Internal gates: ∨ ∧ ¬

• Valuation: function from variables to {0, 1}
Example: ν = {x 7→ 0, y 7→ 1}...

mapped to 1

38/45

Boolean circuit representations

Circuits are just a way to represent Boolean formulas
while factoring common subexpressions (more concise)

∨

¬

x

∧

y

• Directed acyclic graph of gates

• Output gate:

• Variable gates: x

• Internal gates: ∨ ∧ ¬

• Valuation: function from variables to {0, 1}
Example: ν = {x 7→ 0, y 7→ 1}... mapped to 1

38/45

Circuit restrictions

Tractable circuit class: d-DNNF:

• ∨ are all deterministic:

The inputs are mutually exclusive
(= no valuation ν makes two inputs
simultaneously evaluate to 1)

• ∧ are all decomposable:

The inputs are independent
(= no variable x has a path to two
di�erent inputs)

→ We can compute the probability of a
d-DNNF with the intensional rules

∨

∧

x ∧

y ¬

z

∧∧

¬

x ∧

y z

39/45

Circuit restrictions

Tractable circuit class: d-DNNF:

• ∨ are all deterministic:

The inputs are mutually exclusive
(= no valuation ν makes two inputs
simultaneously evaluate to 1)

• ∧ are all decomposable:

The inputs are independent
(= no variable x has a path to two
di�erent inputs)

→ We can compute the probability of a
d-DNNF with the intensional rules

∨

∧

x ∧

y ¬

z

∧∧

¬

x ∧

y z

39/45

Circuit restrictions

Tractable circuit class: d-DNNF:

• ∨ are all deterministic:

The inputs are mutually exclusive
(= no valuation ν makes two inputs
simultaneously evaluate to 1)

• ∧ are all decomposable:

The inputs are independent
(= no variable x has a path to two
di�erent inputs)

→ We can compute the probability of a
d-DNNF with the intensional rules

∨

∧

x ∧

y ¬

z

∧∧

¬

x ∧

y z

39/45

Ordered Binary Decision Diagram (OBDD)

OBDD for a Boolean query Q on database I:
ordered decision diagram on the facts of I to decide whether Q holds

Q : π∅(R ./ S ./ T)

R

a r1
b r2
c r3

S

a a s1
b v s2
b w s3

T

v t1
w t2
b t3

r2?

0

0

1

0
1

1

0

1
0

1

0 1

→ We can compute the probability of an OBDD bottom-up

40/45

Ordered Binary Decision Diagram (OBDD)

OBDD for a Boolean query Q on database I:
ordered decision diagram on the facts of I to decide whether Q holds

Q : π∅(R ./ S ./ T)

R

a r1
b r2
c r3

S

a a s1
b v s2
b w s3

T

v t1
w t2
b t3

r2?

0

0

1

0
1

1

0

1
0

1

0 1

→ We can compute the probability of an OBDD bottom-up

40/45

Ordered Binary Decision Diagram (OBDD)

OBDD for a Boolean query Q on database I:
ordered decision diagram on the facts of I to decide whether Q holds

Q : π∅(R ./ S ./ T)

R

a r1
b r2
c r3

S

a a s1
b v s2
b w s3

T

v t1
w t2
b t3

r2?

0

. . .

0

1

0
1

1

0

1
0

1

0 1

→ We can compute the probability of an OBDD bottom-up

40/45

Ordered Binary Decision Diagram (OBDD)

OBDD for a Boolean query Q on database I:
ordered decision diagram on the facts of I to decide whether Q holds

Q : π∅(R ./ S ./ T)

R

a r1
b r2
c r3

S

a a s1
b v s2
b w s3

T

v t1
w t2
b t3

r2?

0

s2?

0

1

. . .

. . .

0
1

1

0

1
0

1

0 1

→ We can compute the probability of an OBDD bottom-up

40/45

Ordered Binary Decision Diagram (OBDD)

OBDD for a Boolean query Q on database I:
ordered decision diagram on the facts of I to decide whether Q holds

Q : π∅(R ./ S ./ T)

R

a r1
b r2
c r3

S

a a s1
b v s2
b w s3

T

v t1
w t2
b t3

r2?

0

s2?

0

1

t1?

. . .

0
1

1

0

1

0
1

0 1

→ We can compute the probability of an OBDD bottom-up

40/45

Ordered Binary Decision Diagram (OBDD)

OBDD for a Boolean query Q on database I:
ordered decision diagram on the facts of I to decide whether Q holds

Q : π∅(R ./ S ./ T)

R

a r1
b r2
c r3

S

a a s1
b v s2
b w s3

T

v t1
w t2
b t3

r2?

0

s2?

0

1

t1?

s3?

0
1

1

0

1

. . .0
1

0 1

→ We can compute the probability of an OBDD bottom-up

40/45

Ordered Binary Decision Diagram (OBDD)

OBDD for a Boolean query Q on database I:
ordered decision diagram on the facts of I to decide whether Q holds

Q : π∅(R ./ S ./ T)

R

a r1
b r2
c r3

S

a a s1
b v s2
b w s3

T

v t1
w t2
b t3

r2?

0

s2?

0

1

t1?

s3?

0
1

1

0

1

t2?0
1

0 1

→ We can compute the probability of an OBDD bottom-up

40/45

Ordered Binary Decision Diagram (OBDD)

OBDD for a Boolean query Q on database I:
ordered decision diagram on the facts of I to decide whether Q holds

Q : π∅(R ./ S ./ T)

R

a r1
b r2
c r3

S

a a s1
b v s2
b w s3

T

v t1
w t2
b t3

r2?

0

s2?

0

1

t1?

s3?

0
1

1

0

1

t2?0
1

0 1

→ We can compute the probability of an OBDD bottom-up
40/45

Approximation

• When it’s too hard to compute the exact probability,
we can approximate it

• One possibility is to compute a lower bound and upper bound:
• max(P(φ),P(ψ)) ≤ P(φ ∨ ψ) ≤ min(P(φ) + P(ψ), 1)
• max(0,P(φ) + P(ψ)− 1) ≤ P(φ ∧ ψ) ≤ min(P(φ),P(ψ)) (by duality)
• P(¬φ) = 1− P(φ) (reminder)

41/45

Approximation

• When it’s too hard to compute the exact probability,
we can approximate it

• One possibility is to compute a lower bound and upper bound:
• max(P(φ),P(ψ)) ≤ P(φ ∨ ψ) ≤ min(P(φ) + P(ψ), 1)
• max(0,P(φ) + P(ψ)− 1) ≤ P(φ ∧ ψ) ≤ min(P(φ),P(ψ)) (by duality)
• P(¬φ) = 1− P(φ) (reminder)

41/45

Approximation by sampling

Another possibility is to approximate via Monte-Carlo sampling:

• Pick a random valuation according to the variable probabilities:
→ Set x1 = 0 with probability on P(x1 = 0) and x1 = 1 otherwise
→ Repeat for the other variables

• Evaluate the lineage formula φ under this valuation

• Approximate the probability of the formula φ
as the proportion of times when it was true

• Theoretical guarantees: on how many samples su�ce so that,
with high probability, the estimated probability is almost correct

42/45

Approximation by sampling

Another possibility is to approximate via Monte-Carlo sampling:

• Pick a random valuation according to the variable probabilities:
→ Set x1 = 0 with probability on P(x1 = 0) and x1 = 1 otherwise
→ Repeat for the other variables

• Evaluate the lineage formula φ under this valuation

• Approximate the probability of the formula φ
as the proportion of times when it was true

• Theoretical guarantees: on how many samples su�ce so that,
with high probability, the estimated probability is almost correct

42/45

Approximation by sampling

Another possibility is to approximate via Monte-Carlo sampling:

• Pick a random valuation according to the variable probabilities:
→ Set x1 = 0 with probability on P(x1 = 0) and x1 = 1 otherwise
→ Repeat for the other variables

• Evaluate the lineage formula φ under this valuation

• Approximate the probability of the formula φ
as the proportion of times when it was true

• Theoretical guarantees: on how many samples su�ce so that,
with high probability, the estimated probability is almost correct

42/45

Approximation by sampling

Another possibility is to approximate via Monte-Carlo sampling:

• Pick a random valuation according to the variable probabilities:
→ Set x1 = 0 with probability on P(x1 = 0) and x1 = 1 otherwise
→ Repeat for the other variables

• Evaluate the lineage formula φ under this valuation

• Approximate the probability of the formula φ
as the proportion of times when it was true

• Theoretical guarantees: on how many samples su�ce so that,
with high probability, the estimated probability is almost correct

42/45

Using external tools

• Specialized software to compute the probability of a formula:
weighted model counters

• Examples (ongoing research):
• c2d: http://reasoning.cs.ucla.edu/c2d/download.php
• d4: https://www.cril.univ-artois.fr/KC/d4.html
• dsharp: https://bitbucket.org/haz/dsharp

43/45

http://reasoning.cs.ucla.edu/c2d/download.php
https://www.cril.univ-artois.fr/KC/d4.html
https://bitbucket.org/haz/dsharp

Table of contents

Probabilistic query evaluation

Naive evaluation

Extensional evaluation

Intensional query evaluation

Conclusion

44/45

Summary

• We have seen probabilistic query evaluation on TID instances:
compute the marginal probability of each query output tuple

• We can enumerate naively all possible worlds, but it is ine�cient

• For some queries, we can do better:
• Extensional evaluation: �nd a safe plan so we can correctly
compute all probabilities as the query is being evaluated

• Intensional evaluation:
• compute the lineage of each result via pc-tables
• compute the probability of each lineage expression

45/45

Summary

• We have seen probabilistic query evaluation on TID instances:
compute the marginal probability of each query output tuple

• We can enumerate naively all possible worlds, but it is ine�cient

• For some queries, we can do better:
• Extensional evaluation: �nd a safe plan so we can correctly
compute all probabilities as the query is being evaluated

• Intensional evaluation:
• compute the lineage of each result via pc-tables
• compute the probability of each lineage expression

45/45

Summary

• We have seen probabilistic query evaluation on TID instances:
compute the marginal probability of each query output tuple

• We can enumerate naively all possible worlds, but it is ine�cient

• For some queries, we can do better:

• Extensional evaluation: �nd a safe plan so we can correctly
compute all probabilities as the query is being evaluated

• Intensional evaluation:
• compute the lineage of each result via pc-tables
• compute the probability of each lineage expression

45/45

Summary

• We have seen probabilistic query evaluation on TID instances:
compute the marginal probability of each query output tuple

• We can enumerate naively all possible worlds, but it is ine�cient

• For some queries, we can do better:
• Extensional evaluation: �nd a safe plan so we can correctly
compute all probabilities as the query is being evaluated

• Intensional evaluation:
• compute the lineage of each result via pc-tables
• compute the probability of each lineage expression

45/45

Summary

• We have seen probabilistic query evaluation on TID instances:
compute the marginal probability of each query output tuple

• We can enumerate naively all possible worlds, but it is ine�cient

• For some queries, we can do better:
• Extensional evaluation: �nd a safe plan so we can correctly
compute all probabilities as the query is being evaluated

• Intensional evaluation:
• compute the lineage of each result via pc-tables
• compute the probability of each lineage expression

45/45

Acknowledgements

Partly inspired by slides by Silviu Maniu
http://silviu.maniu.info/teaching/m2_dk_udm_query_processing.pdf

http://silviu.maniu.info/teaching/m2_dk_udm_query_processing.pdf

References i

Abiteboul, S., Hull, R., and Vianu, V. (1995).
Foundations of Databases.
Addison-Wesley.
http://webdam.inria.fr/Alice/pdfs/all.pdf.

Barbará, D., Garcia-Molina, H., and Porter, D. (1992).
The management of probabilistic data.
IEEE Transactions on Knowledge and Data Engineering, 4(5).
http:
//www.iai.uni-bonn.de/III/lehre/AG/IntelligenteDatenbanken/
Seminar/SS05/Literatur/%5BBGP92%5DProbData_IEEE_TKDE.pdf.

http://webdam.inria.fr/Alice/pdfs/all.pdf
http://www.iai.uni-bonn.de/III/lehre/AG/IntelligenteDatenbanken/Seminar/SS05/Literatur/%5BBGP92%5DProbData_IEEE_TKDE.pdf
http://www.iai.uni-bonn.de/III/lehre/AG/IntelligenteDatenbanken/Seminar/SS05/Literatur/%5BBGP92%5DProbData_IEEE_TKDE.pdf
http://www.iai.uni-bonn.de/III/lehre/AG/IntelligenteDatenbanken/Seminar/SS05/Literatur/%5BBGP92%5DProbData_IEEE_TKDE.pdf

References ii

Dalvi, N. N. and Suciu, D. (2007).
E�cient query evaluation on probabilistic databases.
VLDB Journal.
http://www.vldb.org/conf/2004/RS22P1.PDF.

Green, T. J. and Tannen, V. (2006).
Models for incomplete and probabilistic information.
IEEE Data Eng. Bull.
http://sites.computer.org/debull/A06mar/green.ps.

Huang, J., Antova, L., Koch, C., and Olteanu, D. (2009).
MayBMS: a probabilistic database management system.
In SIGMOD.
https://www.cs.ox.ac.uk/dan.olteanu/papers/hako-sigmod09.pdf.

http://www.vldb.org/conf/2004/RS22P1.PDF
http://sites.computer.org/debull/A06mar/green.ps
https://www.cs.ox.ac.uk/dan.olteanu/papers/hako-sigmod09.pdf

References iii

Lakshmanan, L. V. S., Leone, N., Ross, R. B., and Subrahmanian, V. S.
(1997).
ProbView: A �exible probabilistic database system.
ACM Transactions on Database Systems.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.53.
293&rep=rep1&type=pdf.

Ré, C. and Suciu, D. (2007).
Materialized views in probabilistic databases: for information
exchange and query optimization.
In VLDB.
http://www.cs.stanford.edu/people/chrismre/papers/prob_
materialized_views_TR.pdf.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.53.293&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.53.293&rep=rep1&type=pdf
http://www.cs.stanford.edu/people/chrismre/papers/prob_materialized_views_TR.pdf
http://www.cs.stanford.edu/people/chrismre/papers/prob_materialized_views_TR.pdf

References iv

Suciu, D., Olteanu, D., Ré, C., and Koch, C. (2011).
Probabilistic Databases.
Morgan & Claypool.
Unavailable online.

	Probabilistic query evaluation
	Naive evaluation
	Extensional evaluation
	Intensional query evaluation
	Conclusion

