

Uncertain Data Management Probabilistic Query Evaluation

Antoine Amarilli¹, Silviu Maniu²

December 5th, 2017

¹Télécom ParisTech

²LRI

Probabilistic query evaluation

Naive evaluation

Extensional evaluation

Intensional query evaluation

Conclusion

	U	
date	prof	
04	S	0.8
04	А	0.2

	U	
date	prof	
04	S	0.8
04	А	0.2

U					
date	prof				
04	S				
04	А				

	U	
date	prof	
04	S	0.8
04	А	0.2

L	J	U	J
date	prof	date	prof
04	S	04	S
04	А	04	А

	U	
date	prof	
04	S	0.8
04	А	0.2

l	J	U	J	L	J
date	prof	date	prof	date	prof
04	S	04	S	04	S
04	А	04	А	04	А

	U	
date	prof	
04	S	0.8
04	А	0.2

l	J	L	J		J	U	J
date	prof	date	prof	date	prof	date	prof
04	S	04	S	04	S	04	S
04	А	04	А	04	А	04	А

	U	
date	prof	
04	S	0.8
04	А	0.2

l	J	l	J	l	J	ι	J
date	prof	date	prof	date	prof	date	prof
04	S	04	S	04	S	04	S
04	А	04	А	04	A	04	А
0.8	× 0.2						

	U	
date	prof	
04	S	0.8
04	А	0.2

l	J	l	U		U		J
date	prof	date	prof	date	prof	date	prof
04	S	04	S	04	S	04	S
04	А	04	А	04	А	04	А
0.8 >	× 0.2	(1 – 0.8	3) × 0.2				

	U	
date	prof	
04	S	0.8
04	А	0.2

l	J	l	U U		J		U
date	prof	date	prof	date	prof	date	prof
04	S	04	S	04	S	04	S
04	А	04	А	04	А	04	А
0.8 >	× 0.2	(1 – 0.8	B) × 0.2	$\overline{0.8 imes (1-0.2)}$			

	U	
date	prof	
04	S	0.8
04	А	0.2

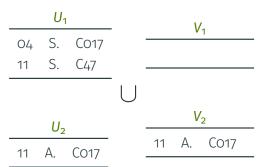
Remember that they stand for a **probabilistic database**:

U	l	U		J		U
date prof	date	prof	date	prof	dat	e prof
04 S	04	S	04	S	04	S
04 A	04	А	04	А	04	А
0.8 imes 0.2	(1 – 0.8	3) × 0.2	0.8 × (*	1 – 0.2)	(1 - 0.8	(1-0.2)

3/45

U ₁				
04	S.	C017		
11	S.	C47		
			•	
	U ₂			
11	Α.	C017		

	U 1	I	_
04	S.	C017	
11	S.	C47	
			U
	U ₂		
11	Α.	C017	



U ₁		V ₁		
04 S. C017		¥1		
11 S. C47				
$\pi(U_1) = 0.8$	IJ	$\pi(V_1)=$ 0.9		
U_2		V ₂		
11 A. CO17		11 A. CO17		
$\pi(U_2) = 0.2$		$\pi(V_2) = 0.1$		

U ₁		V ₁	
04 S. C017			
11 S. C47			
$\pi(U_1) = 0.8$	U	$\pi(V_1) = 0.9$	
U ₂	-	V ₂	
11 A. CO17		11 A. CO17	
		$\pi(V_2) = 0.1$	
$\pi(U_2) = 0.2$			

		<i>W</i> ₁
		04 S. C017
U ₁		11 S. C47
	V ₁	
04 S. C017		
11 S. C47		
$\pi(U_1) = 0.8$	$\pi(V_1) = 0.9$	=
	V ₂	
U_2	11 A. CO17	
11 A. CO17		
$\pi(U_2) = 0.2$	$\pi(V_2)=$ 0.1	

						W ₁
				04	S.	C017
U ₁				11	S.	C47
		V ₁	_			
04 S. C017						W ₂
11 S. C47		$\pi(V_1) = 0.9$	-	04	S.	C017
$\pi(U_1)=$ 0.8	\cup		=	11	S.	C47
U ₂		V ₂	_	11	Α.	C017
11 A. CO17		11 A. Co17				
		$\pi(V_2) = 0.1$	-			
$\pi(U_2)=$ 0.2						

		W1
		04 S. C017
U ₁		11 S. C47
	V ₁	
04 S. C017 11 S. C47		W ₂
	$\pi(V_1) = 0.9$	04 S. C017
$\pi(U_1)=$ 0.8	=	11 S. C47
U ₂	V ₂	11 A. CO17
 11 A. Co17	11 A. CO17	
	$\pi(V_2)=$ 0.1	W_3
$\pi(U_2) = 0.2$		11 A. CO17

		W ₁
		04 S. C017
U ₁		11 S. C47
U ₁	V ₁	$\pi(W_1) = 0.8 \times 0.9$
04 S. C017		W_2
11 S. C47	$\pi(V_1) = 0.9$	04 S. C017
$\pi(U_1) = 0.8 \qquad igcup$	=	= 11 S. C47
U ₂	V_2	11 A. CO17
11 A. CO17	11 A. CO17	
$\pi(U) = 0.2$	$\pi(V_2)=$ 0.1	W ₃
$\pi(U_2) = 0.2$		11 A. CO17

				W ₁
				04 S. C017
U ₁				11 S. C47
		<i>V</i> ₁		$\pi(W_1) = 0.8 \times 0.9$
04 S. C017				W ₂
11 S. C47		-(1/) 0.0		04 S. C017
$\pi(U_1) = 0.8$ (J	$\pi(V_1)=$ 0.9	=	11 S. C47
U_2		V ₂		11 A. CO17
11 A. CO17		11 A. CO17		$\pi(W_1) = 0.8 imes 0.1$
		$\pi(V_2) = 0.1$		W ₃
$\pi(U_2)=$ 0.2				11 A. CO17

				<i>W</i> ₁
				04 S. C017
U ₁				11 S. C47
		V ₁		$\pi(W_1) = 0.8 imes 0.9$
04 S. C017 11 S. C47			-	W ₂
		$\pi(V_1) = 0.9$	-	04 S. C017
$\pi(U_1)=$ 0.8	\bigcup		—	11 S. C47
U_2		V ₂	_	11 A. CO17
11 A. CO17		11 A. CO17		$\pi(W_1) = 0.8 imes 0.1$
·		$\pi(V_2) = 0.1$	-	W ₃
$\pi(U_2)=$ 0.2		(- /		11 A. CO17
				TT A. COT/
				$\pi(W_1)=$ 0.2 $ imes$ 0.9

				W ₁
				04 S. C017
U ₁				11 S. C47
		V ₁		$\pi(W_1)=0.8 imes 0.9$
04 S. C017				W_2
11 S. C47		$\pi(V_1) = 0.9$		04 S. C017
$\pi(U_1) = 0.8$	\bigcup		=	11 S. C47
U_2		V ₂		11 A. CO17
11 A. CO17		11 A. CO17		$\pi(W_1)=$ 0.8 $ imes$ 0.1
		$\pi(V_2) = 0.1$		<i>W</i> ₃
$\pi(U_2) = 0.2$				11 A. CO17
				$\pi(W_1) = 0.2 imes 0.9$
				+0.2 imes 0.1

• TID are not a strong representation system

- TID are not a strong representation system
- The result of a relational algebra query on a TID database is generally not representable as a TID database

- TID are not a strong representation system
- The result of a relational algebra query on a TID database is generally not representable as a TID database
- ightarrow Often, we don't want the entire result

- TID are not a strong representation system
- The result of a relational algebra query on a TID database is generally not representable as a TID database
- ightarrow Often, we don't want the entire result
- ightarrow We just want to know the **probability** of each output tuple

- Inputs:
 - a database D of TID instances
 - a relational algebra **query Q**
 - \cdot a result tuple \vec{t}

- Inputs:
 - a **database D** of TID instances
 - a relational algebra query Q
 - \cdot a result tuple \vec{t}
- Output : what is the **probability** that \vec{t} is in Q(D)?

- Inputs:
 - a **database D** of TID instances
 - a relational algebra query Q
 - \cdot a result tuple \vec{t}
- Output : what is the **probability** that \vec{t} is in Q(D)?
- ightarrow What is the marginal probability of obtaining $ec{t}$ as a result?

TID instance U			Query Q	Tuple \vec{t}
date	prof	F	$\pi_{\mathbf{prof}}(U)$	S
04	S	0.8		
04	А	0.2		

TID instance U		ice U	Query Q	Tuple \vec{t}
date	prof	;	$\pi_{\mathbf{prof}}(U)$	S
04	S	0.8		
04	А	0.2		

 \rightarrow The marginal probability is **0.8**

Here's another example:

TID in	istance	e <i>U</i> ′	TID ins	tance V	Query Q	Tuple \vec{t}
date	prof	,	date		$\pi_{prof}(\mathit{U'}\bowtie \mathit{V})$	S
04	S	1	04	0.5		and
04	А	1				А

Here's another example:

TID in	stance	e <i>U</i> ′	TID ins	tance V	Query Q	Tuple \vec{t}
date	prof	;	date		$\pi_{\mathbf{prof}}(\mathit{U'}\bowtie \mathit{V})$	S
04	S	1	04	0.5		and
04	А	1				А

- $\rightarrow\,$ The marginal probability of $\rm S$ is 0.5
- $\rightarrow\,$ The marginal probability of A is also 0.5

Here's another example:

TID instance	U′	TID ins	tance V	Query Q	Tuple \vec{t}
date prof		date		$\pi_{\mathbf{prof}}(\mathbf{U'}\bowtie\mathbf{V})$	S
04 S	1	04	0.5		and
04 A	1				А

- $\rightarrow\,$ The marginal probability of $\rm S$ is 0.5
- ightarrow The marginal probability of A is also 0.5
- $\rightarrow~$ Caution: It does not mean that the result is the TID instance at the right!

prof	
S	0.5
А	0.5

- Answers the intuitive question "what is the probability of this"?
- Often more interesting than the correlations between worlds

- Answers the intuitive question "what is the probability of this"?
- Often more interesting than the correlations between worlds
- \rightarrow How to **compute** these probabilities?

Probabilistic query evaluation

Naive evaluation

Extensional evaluation

Intensional query evaluation

Conclusion

- Compute the **probabilistic instance** represented by the input
 - ightarrow Finite number of possible worlds

- Compute the **probabilistic instance** represented by the input
 - ightarrow Finite number of possible worlds
- Run the query over **each possible world**
 - $\rightarrow~$ Check if the result tuple is in the output

- Compute the **probabilistic instance** represented by the input
 - ightarrow Finite number of possible worlds
- Run the query over **each possible world**
 - $\rightarrow~$ Check if the result tuple is in the output
- Sum the probabilities of all worlds that contain the output tuple

Naive probabilistic query evaluation example

TID instance U			Query Q	Tuple \vec{t}
date	prof	;	$\pi_{\mathbf{prof}}(U)$	S
04	S	0.8		
04	А	0.2		

Naive probabilistic query evaluation example

TID	TID instance U		Query Q	Tuple \vec{t}
date	prof	F	$\pi_{\mathbf{prof}}(U)$	S
04	S	0.8		
04	А	0.2		

Probabilistic relation Q(U):

prof	prof	prof	prof
S	S	S	S
А	А	A	А
0.8 × 0.2	$(\overline{1-0.8}) imes 0.2$	0.8 imes (1 - 0.2)	$(1-0.8) \times (1-0.2)$

Naive probabilistic query evaluation example

TID	TID instance U		Query Q	Tuple \vec{t}
date	e prof	F	$\pi_{\mathbf{prof}}(U)$	S
04	S	0.8		
04	А	0.2		

Probabilistic relation Q(U):

prof	prof prof		prof
S	S	S	S
А	А	A	А
0.8 × 0.2	$(\overline{1-0.8}) imes 0.2$	$\overline{0.8 imes (1 - 0.2)}$	$(1-0.8) \times (1-0.2)$

Total probability that \vec{t} is in Q(U): 0.8 × 0.2 + 0.8 × (1 - 0.2) = 0.8

• Naive evaluation is always possible

- Naive evaluation is always possible
- However, it takes exponential time in general
 - $\rightarrow\,$ Even if the query output has few possible worlds!
 - \rightarrow Feasible if the **input** has few possible worlds (few tuples)

- Naive evaluation is always possible
- However, it takes exponential time in general
 - $\rightarrow\,$ Even if the query output has few possible worlds!
 - \rightarrow Feasible if the **input** has few possible worlds (few tuples)
- Probabilistic query evaluation is **computationally intractable** so it is unlikely that we can beat naive evaluation **in general**

- Naive evaluation is always possible
- However, it takes exponential time in general
 - $\rightarrow\,$ Even if the query output has few possible worlds!
 - \rightarrow Feasible if the **input** has few possible worlds (few tuples)
- Probabilistic query evaluation is **computationally intractable** so it is unlikely that we can beat naive evaluation **in general**
 - $\rightarrow\,$ More efficient methods for special cases

Probabilistic query evaluation

Naive evaluation

Extensional evaluation

Intensional query evaluation

Conclusion

Extensional evaluation idea

• Sometimes we can compute the **probabilities** at each step:

	U	
date	prof	
04	S	0.8
04	А	0.2

	U			V
date	prof		stude	nt
04	S	0.8	1	0.4
04	А	0.2	2	0.6

	U			V
date	prof		stude	nt
04	S	0.8	1	0.4
04	А	0.2	2	0.6
date	prof	U × Stud		
	S	1		
04	-			
04	S	2		
04	А	1		

2

Α

04

	U				V
date	prof			stude	ent
04	S	0.8		1	0.4
04	А	0.2		2	0.6
		U imes	V		
date	prof	stud	en	t	
04	S	1		0.	8 × 0.4
04	S	2			
04	А	1			

2

А

04

U				V
date	prof		stude	nt
04	S	0.8	1	0.4
04	А	0.2	2	0.6

 $U \times V$

date	prof	student	
04	S	1	0.8 imes 0.4
04	S	2	$\textbf{0.8} \times \textbf{0.6}$
04	А	1	
04	А	2	

	U		V	
date	prof		studen	t
04	S	0.8	1	0.4
04	А	0.2	2	0.6

 $U \times V$

date	prof	student	
04	S	1	0.8 imes 0.4
04	S	2	0.8 imes 0.6
04	А	1	0.2 imes 0.4
04	А	2	

	U			/
date	date prof			t
04	S	0.8	1	0.4
04	А	0.2	2	0.6

 $U \times V$

date	prof	student	
04	S	1	0.8 imes 0.4
04	S	2	0.8 imes 0.6
04	А	1	0.2 imes 0.4
04	А	2	0.2 imes 0.6

- We say that queries *Q* and *Q'* are syntactically independent if no relation is used in both *Q* and *Q'*
 - \rightarrow Example: $Q = R \bowtie S$ and $Q' = \pi_{a}(T \times U)$
 - \rightarrow Intuition: the tuples in Q and Q' are independent

- We say that queries *Q* and *Q'* are syntactically independent if no relation is used in both *Q* and *Q'*
 - \rightarrow Example: $Q = R \bowtie S$ and $Q' = \pi_{a}(T \times U)$
 - $\rightarrow\,$ Intuition: the tuples in ${\it Q}$ and ${\it Q}'$ are independent
- Independent join: if Q and Q' are syntactically independent then we can compute $Q \bowtie Q'$ and $Q \times Q'$: multiply the probabilities

$$\rightarrow$$
 Example: $Q = R \bowtie S$ and $Q' = \pi_{a}(T \times U)$

- ightarrow Intuition: the tuples in Q and Q' are independent
- Independent join: if Q and Q' are syntactically independent then we can compute $Q \bowtie Q'$ and $Q \times Q'$: multiply the probabilities

	U	
date	pr	
04	S	0.8
04	А	0.2

$$\rightarrow$$
 Example: $Q = R \bowtie S$ and $Q' = \pi_{a}(T \times U)$

- ightarrow Intuition: the tuples in Q and Q' are independent
- Independent join: if Q and Q' are syntactically independent then we can compute $Q \bowtie Q'$ and $Q \times Q'$: multiply the probabilities

	U			V	
date	pr		pr	st	
04	S	0.8	А	1	0.4
04	А	0.2	S	2	0.6

$$\rightarrow$$
 Example: $Q = R \bowtie S$ and $Q' = \pi_{a}(T \times U)$

- \rightarrow Intuition: the tuples in Q and Q' are independent
- Independent join: if Q and Q' are syntactically independent then we can compute $Q \bowtie Q'$ and $Q \times Q'$: multiply the probabilities

U				V			l	$J \bowtie V$
date	pr		pr	st		date	pr	st
04	S	0.8	A	1	0.4	04	S	2
04	А	0.2	S	2	0.6	04	А	1

$$\rightarrow$$
 Example: $Q = R \bowtie S$ and $Q' = \pi_{a}(T \times U)$

- ightarrow Intuition: the tuples in Q and Q' are independent
- Independent join: if Q and Q' are syntactically independent then we can compute $Q \bowtie Q'$ and $Q \times Q'$: multiply the probabilities

V				U 🖂 V					
date	pr		pr	st		date	pr	st	
04	S	0.8	А	1	0.4	04	S	2	0.8 × 0.6
04	А	0.2	S	2	0.6	04	А	1	

$$\rightarrow$$
 Example: $Q = R \bowtie S$ and $Q' = \pi_{a}(T \times U)$

- ightarrow Intuition: the tuples in Q and Q' are independent
- Independent join: if Q and Q' are syntactically independent then we can compute $Q \bowtie Q'$ and $Q \times Q'$: multiply the probabilities

U					V			ι	J 🖂 V	V
date	pr		р	r	st		date	pr	st	
04	S	0.8	A		1	0.4	04	S	2	0.8 × 0.6
04	А	0.2	S		2	0.6	04	А	1	0.2 imes 0.4

More query independence

	U	
date	prof	
04	S	0.8
04	А	0.2

	U			V	
date	prof		date	prof	
04	S	0.8	04	А	0.4
04	А	0.2	11	А	0.2

	U			V	
date	prof		date	prof	
04	S	0.8	04	А	0.4
04	А	0.2	11	А	0.2
		U L	J V		
date	prof				
04	S				
04	А				
11	А				

	U			V	
date	prof		date	prof	
04	S	0.8	04	А	0.4
04	А	0.2	11	А	0.2
		U L	V		
date	prof				
04	S	0.8			
04	А				
11	А				

	U			V				
date	prof		date	prof				
04	S	0.8	04	А	0.4			
04	А	0.2	11	А	0.2			
$U \cup V$								
date	prof							
04	S	0.8						
04	А	1 – (1	I – 0.2) I	× (1 –	0.4)			
11	А							

	U			V				
date	prof		date	prof				
04	S	0.8	04	А	0.4			
04	А	0.2	11	А	0.2			
$U \cup V$								
date	prof							
04	S	0.8						
04	А	1 – (1	- 0.2)	× (1 –	0.4)			
11	А	0.2						

U					
date	prof				
04	S	0.8			
04	А	0.2			

	U		$\sigma_{ m pr}$	$of=S^{"}(U)$
date	prof		date	prof
04	S	0.8		
04	А	0.2		

U			$\sigma_{ m pr}$	of="S"(l	J)
date	prof		date	prof	
04	S	0.8	04	S	0.8
04	А	0.2			

• Self-join-free conjunctive query: a join (\bowtie) of projections (π) that does not use the same relation name twice:

 \rightarrow Example: $Q = R \bowtie S \bowtie \pi_{a}(T)$

- Self-join-free conjunctive query: a join (\bowtie) of projections (π) that does not use the same relation name twice:
 - \rightarrow Example: $Q = R \bowtie S \bowtie \pi_{a}(T)$
- A separator is an attribute that occurs in all tables of the join: \rightarrow Example: if $R(\mathbf{a}, \mathbf{b}), S(\mathbf{a}), T(\mathbf{a}, \mathbf{c})$ then **a** is a separator of Q

- Self-join-free conjunctive query: a join (\bowtie) of projections (π) that does not use the same relation name twice:
 - \rightarrow Example: $Q = R \bowtie S \bowtie \pi_{a}(T)$
- A separator is an attribute that occurs in all tables of the join: \rightarrow Example: if $R(\mathbf{a}, \mathbf{b}), S(\mathbf{a}), T(\mathbf{a}, \mathbf{c})$ then **a** is a separator of Q
- If Q is a self-join-free conjunctive query and a is a separator then π_{-a} (projecting away the attribute a) can be computed using independent OR

U						
date	prof					
04	S	0.8				
04	А	0.2				
11	S	0.4				
11	А	0.6				

	U		$\pi_{date}(U)$
date	prof		date
04	S	0.8	04
04	А	0.2	11
11	S	0.4	
11	А	0.6	

	U			$\pi_{ extsf{date}}(U)$
date	prof		date	
04	S	0.8	04	$1 - (1 - 0.8) \times (1 - 0.2)$
04	А	0.2	11	
11	S	0.4		
11	А	0.6		

	U			$\pi_{date}(U)$
date	prof		date	
04	S	0.8	04	$1 - (1 - 0.8) \times (1 - 0.2)$
04	А	0.2	11	1 - (1 - 0.4) imes (1 - 0.6)
11	S	0.4		
11	А	0.6		

l		
date	prof	
04	S	1/2

l	J			V	
date	prof		prof	cause	
04	S	1/2	S	illness	1/2
			S	bahamas	1/2

l	J			V	
date	prof		prof	cause	
04	S	1/2	S	illness	1/2
			S	bahamas	1/2

- Query: $Q(U, V) = \pi_{date, prof}(U \bowtie V)$
- Can be rewritten as: $U \bowtie \pi_{-cause}(V)$

l	J			V	
date	prof		prof	cause	
04	S	1/2	S	illness	1/2
			S	bahamas	1/2

- Query: $Q(U, V) = \pi_{date, prof}(U \bowtie V)$
- Can be rewritten as: $U \bowtie \pi_{-cause}(V)$

$\pi_{-cause}(V)$		$U \bowtie \pi_{-cause}(V)$			
prof	-	date	prof	-	
S	3/4	04	S	3/8	

• Query: $Q(U, V) = \pi_{date, prof}(U \bowtie V)$

• Can be rewritten as $\pi_{-cause}(U \bowtie V)$ instead of $U \bowtie \pi_{-cause}(V)$

- Query: $Q(U, V) = \pi_{date, prof}(U \bowtie V)$
- Can be rewritten as $\pi_{-cause}(U \bowtie V)$ instead of $U \bowtie \pi_{-cause}(V)$

	U	
date	prof	
04	S	1/2

• Query: $Q(U, V) = \pi_{date, prof}(U \bowtie V)$

• Can be rewritten as $\pi_{-cause}(U \bowtie V)$ instead of $U \bowtie \pi_{-cause}(V)$

U			V		
date	prof		prof	cause	
04	S	1/2	S illness		1/2
			S	bahamas	1/2

• Query: $Q(U, V) = \pi_{\mathsf{date}, \mathsf{prof}}(U \bowtie V)$

• Can be rewritten as $\pi_{-cause}(U \bowtie V)$ instead of $U \bowtie \pi_{-cause}(V)$

U			V		
date	prof		prof	cause	
04	S	1/2	S	illness	1/2
			S	bahamas	1/2

 $U \bowtie V$

date	prof	cause
04	S	illness
04	S	bahamas

• Query: $Q(U, V) = \pi_{\mathsf{date}, \mathsf{prof}}(U \bowtie V)$

• Can be rewritten as $\pi_{-cause}(U \bowtie V)$ instead of $U \bowtie \pi_{-cause}(V)$

U			V		
date	prof		prof	cause	
04	S	1/2	S	illness	1/2
			S	bahamas	1/2

 $U \bowtie V$

date	prof	cause	
04	S	illness	1/4
04	S	bahamas	

• Query: $Q(U, V) = \pi_{\mathsf{date}, \mathsf{prof}}(U \bowtie V)$

• Can be rewritten as $\pi_{-cause}(U \bowtie V)$ instead of $U \bowtie \pi_{-cause}(V)$

U			V		
date	prof		prof	cause	
04	S	1/2	S	illness	1/2
			S	bahamas	1/2

 $U \bowtie V$

date	prof	cause	
04	S	illness	1/4
04	S	bahamas	1/4

• Query: $Q(U, V) = \pi_{date, prof}(U \bowtie V)$

• Can be rewritten as $\pi_{-cause}(U \bowtie V)$ instead of $U \bowtie \pi_{-cause}(V)$

	U			V		
	date	prof	prof	cause		
-	04	S 1/2	S	illness	;	1/2
-			S	bahan	าลร	1/2
	U	V		π_{-ca}	ause(l	J ⋈ V)
date	prof	cause		date	prof	
04	S	illness	1/4	04	S	
04	S	bahamas	1/4			

• Query: $Q(U, V) = \pi_{date, prof}(U \bowtie V)$

• Can be rewritten as $\pi_{-cause}(U \bowtie V)$ instead of $U \bowtie \pi_{-cause}(V)$

	U			V		
	date	prof	prof	cause	•	
_	04	S 1/2	S	illnes	S	1/2
-			S	bahai	mas	1/2
	U	V		π_{-}	cause(U ⋈ V)
date	prof	cause		date	prof	F
04	S	illness	1/4	04	S	7/16 ??
04	S	bahamas	1/4			

• Query: $Q(U, V) = \pi_{date, prof}(U \bowtie V)$

· Can be rewritten as $\pi_{-cause}(U \bowtie V)$ instead of $U \bowtie \pi_{-cause}(V)$

	U			V		
	date	prof	prof	cause	j	
	04	S 1/2	S	illnes	S	1/2
-			S	bahai	mas	1/2
	U	V			cause(U ⋈ V)
date	prof	cause		date	pro	f
04	S	illness	1/4	04	S	7/16 ??
04	S	bahamas	1/4			

 \rightarrow The last projection is not independent, so incorrect result! 22/45

• A safe plan for a query *Q* is a way to implement *Q* using the extensional operators:

- A safe plan for a query *Q* is a way to implement *Q* using the extensional operators:
 - It must use them correctly, e.g., respecting independence

- A safe plan for a query *Q* is a way to implement *Q* using the extensional operators:
 - It must use them correctly, e.g., respecting independence
 - It must be **equivalent** to the desired query **Q**

- A safe plan for a query *Q* is a way to implement *Q* using the extensional operators:
 - It must use them correctly, e.g., respecting independence
 - It must be **equivalent** to the desired query **Q**
- → With a **safe plan**, we can compute the marginal probability of all query results

• Relations *R*(**a**), *S*(**a**, **b**), *T*(**b**)

- Relations *R*(**a**), *S*(**a**, **b**), *T*(**b**)
- Query $Q = \pi_{-a}(\pi_{-b}(R \bowtie S \bowtie T))$

- Relations *R*(**a**), *S*(**a**, **b**), *T*(**b**)
- Query $Q = \pi_{-a}(\pi_{-b}(R \bowtie S \bowtie T))$
- Does **Q** have a safe plan?

- Relations *R*(**a**), *S*(**a**, **b**), *T*(**b**)
- Query $Q = \pi_{-\mathbf{a}}(\pi_{-\mathbf{b}}(R \bowtie S \bowtie T))$
- Does **Q** have a safe plan?
 - If we do the **joins** first then no projection is independent

- Relations *R*(**a**), *S*(**a**, **b**), *T*(**b**)
- Query $Q = \pi_{-\mathbf{a}}(\pi_{-\mathbf{b}}(R \bowtie S \bowtie T))$
- Does **Q** have a safe plan?
 - If we do the **joins** first then no projection is independent
 - If we write Q as $\pi_{-a}(R \bowtie \pi_{-b}(S \bowtie T)))$ then the projection is **not safe**

- Relations *R*(**a**), *S*(**a**, **b**), *T*(**b**)
- Query $Q = \pi_{-\mathbf{a}}(\pi_{-\mathbf{b}}(R \bowtie S \bowtie T))$
- Does **Q** have a safe plan?
 - If we do the **joins** first then no projection is independent
 - If we write Q as $\pi_{-a}(R \bowtie \pi_{-b}(S \bowtie T)))$ then the projection is **not safe**
 - Same problem for $\pi_{-\mathbf{b}}(\pi_{-\mathbf{a}}(R \bowtie S) \bowtie T)$

- Relations *R*(**a**), *S*(**a**, **b**), *T*(**b**)
- Query $Q = \pi_{-\mathbf{a}}(\pi_{-\mathbf{b}}(R \bowtie S \bowtie T))$
- Does **Q** have a safe plan?
 - If we do the **joins** first then no projection is independent
 - If we write Q as $\pi_{-a}(R \bowtie \pi_{-b}(S \bowtie T)))$ then the projection is **not safe**
 - Same problem for $\pi_{-\mathbf{b}}(\pi_{-\mathbf{a}}(R \bowtie S) \bowtie T)$
- \rightarrow In fact **Q** is **intractable** and it has no safe plan

Extensional query evaluation summary

- Extensional query evaluation:
 - Express the query as a **safe plan** with the extensional operators
 - Compute the **query results** and their **probabilities** via the plan
 - The probabilities are **correct** because the plan is safe

Extensional query evaluation summary

- Extensional query evaluation:
 - Express the query as a **safe plan** with the extensional operators
 - Compute the **query results** and their **probabilities** via the plan
 - The probabilities are **correct** because the plan is safe
- Summary of safe operators:
 - Product and join of syntactically independent queries
 - → **Product** of independent probabilities
 - Union of syntactically independent queries
 - \rightarrow Independent OR of the probabilities
 - Projecting away a separator attribute
 - \rightarrow Independent OR because the tuples in each group are independent
 - Applying selection in the straightforward way
 - Also other rules: negation, inclusion-exclusion, etc.

Extensional query evaluation summary

- Extensional query evaluation:
 - Express the query as a **safe plan** with the extensional operators
 - Compute the **query results** and their **probabilities** via the plan
 - The probabilities are **correct** because the plan is safe
- Summary of safe operators:
 - Product and join of syntactically independent queries
 - → **Product** of independent probabilities
 - Union of syntactically independent queries
 - \rightarrow Independent OR of the probabilities
 - Projecting away a separator attribute
 - $\rightarrow~$ Independent OR because the tuples in each group are independent
 - Applying selection in the straightforward way
 - Also other rules: negation, inclusion-exclusion, etc.
- \rightarrow Not all queries have safe plans

Probabilistic query evaluation

Naive evaluation

Extensional evaluation

Intensional query evaluation

Conclusion

Idea of intensional query evaluation

- We cannot always compute directly the probabilities of results
- · Idea:
 - Compute a lineage expression for each output tuple describing the possible worlds where it appears
 - Compute the **probability** of these lineage expressions

Idea of intensional query evaluation

- We cannot always compute directly the probabilities of results
- · Idea:
 - Compute a lineage expression for each output tuple describing the possible worlds where it appears
 - Compute the **probability** of these lineage expressions
- Advantages:
 - Intensional evaluation is always possible (but not always efficient)
 - Intensional evaluation is more **modular**:
 - \rightarrow Compute the lineage expression (no probabilities)
 - \rightarrow Use any **model counting** method or software

Idea of intensional query evaluation

- We cannot always compute directly the probabilities of results
- · Idea:
 - Compute a lineage expression for each output tuple describing the possible worlds where it appears
 - Compute the **probability** of these lineage expressions
- Advantages:
 - Intensional evaluation is always possible (but not always efficient)
 - Intensional evaluation is more **modular**:
 - \rightarrow Compute the lineage expression (no probabilities)
 - \rightarrow Use any **model counting** method or software
- Disadvantages:
 - Two steps: (1.) compute the lineage; (2.) compute the probability
 - The lineage expression loses information about the query

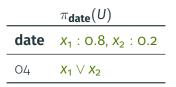
Remember that a TID is a special case of a **pc-table**:

		U
date	prof	X_1 : 0.8, X_2 : 0.2
04	S	<i>X</i> ₁
04	А	X ₂

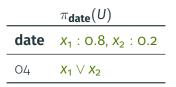
Remember that pc-tables are a **strong representation system** (same rules as for pc-tables for relational algebra operators)

		U
date	prof	X_1 : 0.8, X_2 : 0.2
04	S	X ₁
04	А	X ₂

U			$\pi_{date}(U)$		
date	prof	<i>X</i> ₁ : 0.8, <i>X</i> ₂ : 0.2	date	$X_1: 0.8, X_2: 0.2$	
04	S	<i>x</i> ₁	04	$X_1 \lor X_2$	
04	А	X ₂			



• The lineage expression $x_1 \lor x_2$ describes the possible worlds where the tuple O4 appears.



- The lineage expression $x_1 \lor x_2$ describes the possible worlds where the tuple O4 appears.
- The **probability** that $x_1 \lor x_2$ is true is exactly the probability that this tuple is in the result

• Translate the TID to a **pc-table**

- Translate the TID to a **pc-table**
- Evaluate the query on the pc-table using c-table rules

- Translate the TID to a **pc-table**
- Evaluate the query on the pc-table using c-table rules
- Compute the **probability** $P(\phi)$ of the lineage expression ϕ of the output tuple under consideration

- Translate the TID to a **pc-table**
- Evaluate the query on the pc-table using c-table rules
- Compute the **probability** $P(\phi)$ of the lineage expression ϕ of the output tuple under consideration
- $\rightarrow\,$ We have reduced probabilistic query evaluation to computing the probability that a Boolean formula is true

How to compute the probability of a lineage expression?

Many ways to compute the probability $P(\phi)$:

• Naive method: enumerate all possibilities (exponential)

How to compute the probability of a lineage expression?

- Naive method: enumerate all possibilities (exponential)
- Use some simple intensional rules
 - → e.g., $P(\phi(x, y, z) \land \psi(x', y', z')) = P(\phi(x, y, z)) × P(\psi(x', y', z'))$ thanks to independence

- Naive method: enumerate all possibilities (exponential)
- Use some simple intensional rules
 - → e.g., $P(\phi(x, y, z) \land \psi(x', y', z')) = P(\phi(x, y, z)) × P(\psi(x', y', z'))$ thanks to independence
- Compile the lineage expression in a tractable formalism
 - read-once formulas
 - tractable circuit classes
 - binary decision diagrams

- Naive method: enumerate all possibilities (exponential)
- Use some simple intensional rules
 - → e.g., $P(\phi(x, y, z) \land \psi(x', y', z')) = P(\phi(x, y, z)) × P(\psi(x', y', z'))$ thanks to independence
- Compile the lineage expression in a tractable formalism
 - read-once formulas
 - tractable circuit classes
 - binary decision diagrams
- Approximate the probability of the lineage expression

- Naive method: enumerate all possibilities (exponential)
- Use some simple intensional rules
 - → e.g., $P(\phi(x, y, z) \land \psi(x', y', z')) = P(\phi(x, y, z)) × P(\psi(x', y', z'))$ thanks to independence
- Compile the lineage expression in a tractable formalism
 - read-once formulas
 - tractable circuit classes
 - binary decision diagrams
- Approximate the probability of the lineage expression
- Use an external weighted model counter

- If x_1 is true and x_2 is true, the formula is true
 - \rightarrow Probability 0.8 \times 0.2

- If x_1 is true and x_2 is true, the formula is true
 - \rightarrow Probability 0.8 \times 0.2
- If x_1 is true and x_2 is false, the formula is true
 - \rightarrow Probability 0.8 \times (1 0.2)

- If x_1 is true and x_2 is true, the formula is true
 - $\rightarrow~$ Probability 0.8×0.2
- If x_1 is true and x_2 is false, the formula is true

 \rightarrow Probability 0.8 \times (1 – 0.2)

• If x_1 is false and x_2 is true, the formula is true

 \rightarrow Probability (1 – 0.8) \times 0.2

- If x_1 is true and x_2 is true, the formula is true
 - $\rightarrow~$ Probability 0.8×0.2
- If x_1 is true and x_2 is false, the formula is true

 \rightarrow Probability 0.8 \times (1 – 0.2)

• If x_1 is false and x_2 is true, the formula is true

 \rightarrow Probability (1 – 0.8) \times 0.2

- If x_1 is false and x_2 is false, the formula is false
 - \rightarrow Probability (1 0.8) \times (1 0.2)

- If x_1 is true and x_2 is true, the formula is true
 - $\rightarrow~$ Probability 0.8×0.2
- If x_1 is true and x_2 is false, the formula is true

 \rightarrow Probability 0.8 \times (1 – 0.2)

• If x_1 is false and x_2 is true, the formula is true

 \rightarrow Probability (1 – 0.8) \times 0.2

• If x_1 is false and x_2 is false, the formula is false \rightarrow Probability $(1 - 0.8) \times (1 - 0.2)$

 $\rightarrow P(\phi) = 0.8 \times 0.2 + 0.8 \times (1 - 0.2) + (1 - 0.8) \times 0.2$

- If x_1 is true and x_2 is true, the formula is true
 - $\rightarrow~$ Probability 0.8×0.2
- If x_1 is true and x_2 is false, the formula is true

 \rightarrow Probability 0.8 \times (1 – 0.2)

• If x_1 is false and x_2 is true, the formula is true

 \rightarrow Probability (1 – 0.8) \times 0.2

• If x_1 is false and x_2 is false, the formula is false \rightarrow Probability $(1 - 0.8) \times (1 - 0.2)$

 $\rightarrow P(\phi) = 0.8 \times 0.2 + 0.8 \times (1 - 0.2) + (1 - 0.8) \times 0.2 = 0.84$

• ϕ and ψ are syntactically independent if they have no variables in common

ightarrow E.g., $\phi({\it x},{\it y},{\it z})$ and $\psi({\it x}',{\it y}',{\it z}')$

• ϕ and ψ are syntactically independent if they have no variables in common

ightarrow E.g., $\phi({\it x},{\it y},{\it z})$ and $\psi({\it x}',{\it y}',{\it z}')$

• ϕ and ψ are **mutually exclusive** if $\phi \land \psi$ is unsatisfiable \rightarrow E.g., $\phi = \mathbf{x} \land \mathbf{y}$ and $\psi = \neg \mathbf{x} \land (\mathbf{y} \lor \mathbf{z})$ • ϕ and ψ are syntactically independent if they have no variables in common

ightarrow E.g., $\phi({\it x},{\it y},{\it z})$ and $\psi({\it x}',{\it y}',{\it z}')$

- ϕ and ψ are **mutually exclusive** if $\phi \land \psi$ is unsatisfiable \rightarrow E.g., $\phi = \mathbf{x} \land \mathbf{y}$ and $\psi = \neg \mathbf{x} \land (\mathbf{y} \lor \mathbf{z})$
- $\phi_{|\mathbf{x}=\mathbf{0}}$ is the result of replacing \mathbf{x} by $\mathbf{0}$ in ϕ (and likewise for $\phi_{|\mathbf{x}=\mathbf{1}}$) \rightarrow E.g., for $\phi = \neg \mathbf{x} \land (\mathbf{y} \lor \mathbf{z})$, we have $\phi_{|\mathbf{x}=\mathbf{0}} = \mathbf{y} \lor \mathbf{z}$ and $\phi_{|\mathbf{x}=\mathbf{1}} = \bot$

• Independent AND: if ϕ and ψ are syntactically independent then: $P(\phi \land \psi) = P(\phi) \times P(\psi)$

- Independent AND: if ϕ and ψ are syntactically independent then: $P(\phi \land \psi) = P(\phi) \times P(\psi)$
- Independent OR: if ϕ and ψ are syntactically independent then: $P(\phi \lor \psi) = 1 - (1 - P(\phi)) \times (1 - P(\psi))$

- Independent AND: if ϕ and ψ are syntactically independent then: $P(\phi \land \psi) = P(\phi) \times P(\psi)$
- Independent OR: if ϕ and ψ are syntactically independent then: $P(\phi \lor \psi) = 1 - (1 - P(\phi)) \times (1 - P(\psi))$
- Mutually exclusive OR: if ϕ and ψ are mutually exclusive then: $P(\phi \lor \psi) = P(\phi) + P(\psi)$

- Independent AND: if ϕ and ψ are syntactically independent then: $P(\phi \land \psi) = P(\phi) \times P(\psi)$
- Independent OR: if ϕ and ψ are syntactically independent then: $P(\phi \lor \psi) = 1 - (1 - P(\phi)) \times (1 - P(\psi))$
- Mutually exclusive OR: if ϕ and ψ are mutually exclusive then: $P(\phi \lor \psi) = P(\phi) + P(\psi)$
- Negation: for any ϕ , we have $P(\neg \phi) = 1 P(\phi)$

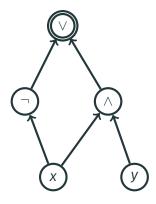
- Independent AND: if ϕ and ψ are syntactically independent then: $P(\phi \land \psi) = P(\phi) \times P(\psi)$
- Independent OR: if ϕ and ψ are syntactically independent then: $P(\phi \lor \psi) = 1 - (1 - P(\phi)) \times (1 - P(\psi))$
- Mutually exclusive OR: if ϕ and ψ are mutually exclusive then: $P(\phi \lor \psi) = P(\phi) + P(\psi)$
- Negation: for any ϕ , we have $P(\neg \phi) = 1 P(\phi)$
- Shannon expansion: for any ϕ and variable x, we have: $P(\phi) = P(x = 0) \times P(\phi_{|x=0}) + P(x = 1) \times P(\phi_{|x=1})$

- We can **always** compute probabilities with intensional rules
- $\rightarrow\,$ But Shannon expansions are costly and may be exponential
 - The efficiency of these rules depends:
 - on how the lineage is written
 - on the order in which they are applied
 - Note that these rules are a bit similar to the **extensional rules**

- Read-once formula: each variable occurs at most once
 - $\rightarrow\,$ If the lineage is written in this way, we can compute the probability with independent AND, independent OR, negation

- Read-once formula: each variable occurs at most once
 - $\rightarrow\,$ If the lineage is written in this way, we can compute the probability with independent AND, independent OR, negation
- Tractable Boolean circuit representations of lineages

- Read-once formula: each variable occurs at most once
 - $\rightarrow\,$ If the lineage is written in this way, we can compute the probability with independent AND, independent OR, negation
- Tractable Boolean circuit representations of lineages
- Tractable representations as Binary decision diagrams

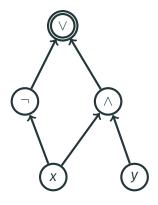


• Directed acyclic graph of gates

(\)

(¬)

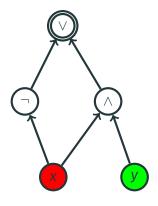
- Output gate:
- Variable gates:
- Internal gates:



- Directed acyclic graph of gates
- Output gate:
- Variable gates:
- Internal gates: (∨)
- Valuation: function from variables to $\{0, 1\}$ Example: $\nu = \{x \mapsto 0, y \mapsto 1\}$...

(\)

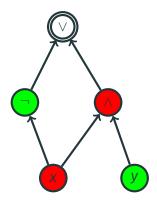
(¬)



- Directed acyclic graph of gates
- Output gate:
- Variable gates:
- Internal gates: (∨)
- Valuation: function from variables to $\{0, 1\}$ Example: $\nu = \{x \mapsto 0, y \mapsto 1\}$...

(\)

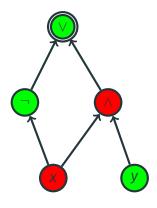
(¬)



- Directed acyclic graph of gates
- Output gate:
- Variable gates:
- Internal gates:
- (V)
- Valuation: function from variables to {0,1} Example: $\nu = \{ \mathbf{x} \mapsto \mathbf{0}, \mathbf{y} \mapsto \mathbf{1} \}$...

(\)

(¬)



- Directed acyclic graph of gates
- Output gate:
- Variable gates:
- Internal gates: (∨)
- Valuation: function from variables to $\{0, 1\}$ Example: $\nu = \{x \mapsto 0, y \mapsto 1\}$... mapped to 1

(\)

(¬)

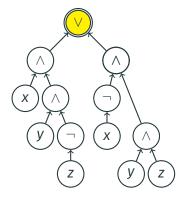
Circuit restrictions

Tractable circuit class: **d-DNNF:**

٠

are all deterministic:

The inputs are mutually exclusive (= no valuation ν makes two inputs simultaneously evaluate to 1)

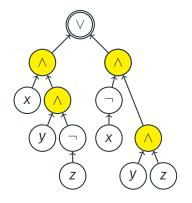


Circuit restrictions

Tractable circuit class: **d-DNNF:**

The inputs are mutually exclusive (= no valuation ν makes two inputs simultaneously evaluate to 1)

- are all decomposable:
- The inputs are independent (= no variable *x* has a path to two different inputs)

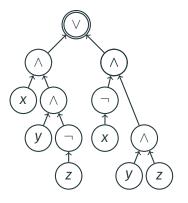


Circuit restrictions

Tractable circuit class: **d-DNNF:**

The inputs are mutually exclusive (= no valuation ν makes two inputs simultaneously evaluate to 1)

- (A) are all decomposable:
- The inputs are independent (= no variable *x* has a path to two different inputs)
 - → We can **compute** the probability of a d-DNNF with the **intensional rules**



OBDD for a Boolean query **Q** on database **I**:

ordered decision diagram on the facts of I to decide whether Q holds

OBDD for a Boolean query **Q** on database **I**:

ordered decision diagram on the facts of I to decide whether Q holds

R		S			т		
а	<i>r</i> ₁		а	а	S ₁	V	t ₁
b	r ₂		b	V	S ₂	W	t ₂
С	<i>r</i> ₃		b	W	S ₃	b	<i>t</i> ₃

OBDD for a Boolean query **Q** on database **I**:

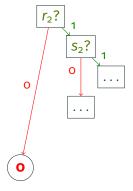
ordered decision diagram on the facts of I to decide whether Q holds

 $Q: \pi_{\emptyset}(R \bowtie S \bowtie T)$ *r*₂? . . . R S 0 r_1 а S₁ t₁ а а V b v b **S**₂ W t_2 r_2 b w b t_3 S₃ С r_3 0

OBDD for a Boolean query **Q** on database **I**:

ordered decision diagram on the facts of I to decide whether Q holds

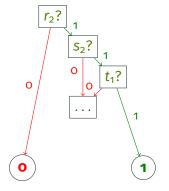
R		S				Г	
а	<i>r</i> ₁		а	а	S ₁	V	t ₁
b	<i>r</i> ₂		b	V	S ₂	W	t ₂
С	<i>r</i> ₃		b	W	S ₃	b	<i>t</i> ₃



OBDD for a Boolean query **Q** on database **I**:

ordered decision diagram on the facts of I to decide whether Q holds

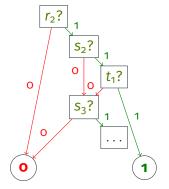
R		S			т			
а	r ₁		а	а	S ₁		V	t ₁
b	r ₂		b	V	S ₂		W	t ₂
С	r ₃		b	W	S ₃		b	t ₃



OBDD for a Boolean query **Q** on database **I**:

ordered decision diagram on the facts of I to decide whether Q holds

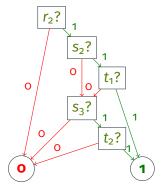
R		S			т		
а	<i>r</i> ₁	а	а	S ₁		V	t ₁
b	r ₂	b	V	S ₂		W	t ₂
С	<i>r</i> ₃	b	W	S ₃		b	t ₃



OBDD for a Boolean query **Q** on database **I**:

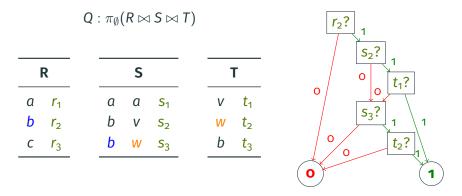
ordered decision diagram on the facts of I to decide whether Q holds

R		S				т		
а	r ₁	а	а	S ₁		V	t ₁	
b	r ₂	b	V	S ₂		W	t ₂	
С	<i>r</i> ₃	b	W	S ₃		b	t ₃	



OBDD for a Boolean query **Q** on database **I**:

ordered decision diagram on the facts of I to decide whether Q holds



 $\rightarrow\,$ We can compute the probability of an OBDD <code>bottom-up</code>

• When it's too hard to compute the exact probability, we can **approximate** it

- When it's too hard to compute the exact probability, we can **approximate** it
- One possibility is to compute a **lower bound** and **upper bound**:
 - $\max(\mathbf{P}(\phi), \mathbf{P}(\psi)) \leq \min(\mathbf{P}(\phi) + \mathbf{P}(\psi), \mathbf{1})$
 - · $\max(0, P(\phi) + P(\psi) 1) \le P(\phi \land \psi) \le \min(P(\phi), P(\psi))$ (by duality)
 - $P(\neg \phi) = 1 P(\phi)$ (reminder)

- Pick a random valuation according to the variable probabilities:
 - \rightarrow Set $x_1 = 0$ with probability on $P(x_1 = 0)$ and $x_1 = 1$ otherwise
 - ightarrow Repeat for the other variables

- Pick a random valuation according to the variable probabilities:
 - \rightarrow Set $x_1 = 0$ with probability on $P(x_1 = 0)$ and $x_1 = 1$ otherwise
 - ightarrow Repeat for the other variables
- Evaluate the lineage formula ϕ under this valuation

- Pick a random valuation according to the variable probabilities:
 - \rightarrow Set $x_1 = 0$ with probability on $P(x_1 = 0)$ and $x_1 = 1$ otherwise
 - ightarrow Repeat for the other variables
- Evaluate the lineage formula ϕ under this valuation
- Approximate the probability of the formula ϕ as the **proportion of times** when it was true

- Pick a random valuation according to the variable probabilities:
 - \rightarrow Set $x_1 = 0$ with probability on $P(x_1 = 0)$ and $x_1 = 1$ otherwise
 - ightarrow Repeat for the other variables
- Evaluate the lineage formula ϕ under this valuation
- Approximate the probability of the formula ϕ as the **proportion of times** when it was true
- **Theoretical guarantees:** on how many samples suffice so that, with high probability, the estimated probability is almost correct

- Specialized software to compute the probability of a formula: weighted model counters
- Examples (ongoing research):
 - C2d: http://reasoning.cs.ucla.edu/c2d/download.php
 - d4: https://www.cril.univ-artois.fr/KC/d4.html
 - dsharp: https://bitbucket.org/haz/dsharp

Probabilistic query evaluation

Naive evaluation

Extensional evaluation

Intensional query evaluation

Conclusion

• We have seen **probabilistic query evaluation** on TID instances: compute the marginal probability of each query output tuple

- We have seen **probabilistic query evaluation** on TID instances: compute the marginal probability of each query output tuple
- We can enumerate **naively** all possible worlds, but it is inefficient

- We have seen **probabilistic query evaluation** on TID instances: compute the marginal probability of each query output tuple
- We can enumerate **naively** all possible worlds, but it is inefficient
- For some queries, we can do better:

- We have seen **probabilistic query evaluation** on TID instances: compute the marginal probability of each query output tuple
- We can enumerate **naively** all possible worlds, but it is inefficient
- For some queries, we can do better:
 - Extensional evaluation: find a safe plan so we can correctly compute all probabilities as the query is being evaluated

- We have seen **probabilistic query evaluation** on TID instances: compute the marginal probability of each query output tuple
- We can enumerate **naively** all possible worlds, but it is inefficient
- For some queries, we can do better:
 - Extensional evaluation: find a safe plan so we can correctly compute all probabilities as the query is being evaluated
 - Intensional evaluation:
 - compute the **lineage** of each result via pc-tables
 - compute the probability of each lineage expression

Partly inspired by slides by Silviu Maniu

http://silviu.maniu.info/teaching/m2_dk_udm_query_processing.pdf

Abiteboul, S., Hull, R., and Vianu, V. (1995). *Foundations of Databases.* Addison-Wesley. http://webdam.inria.fr/Alice/pdfs/all.pdf.

Barbará, D., Garcia-Molina, H., and Porter, D. (1992).

The management of probabilistic data.

IEEE Transactions on Knowledge and Data Engineering, 4(5). http:

//www.iai.uni-bonn.de/III/lehre/AG/IntelligenteDatenbanken/ Seminar/SS05/Literatur/%5BBGP92%5DProbData_IEEE_TKDE.pdf.

References ii

Dalvi, N. N. and Suciu, D. (2007).
 Efficient query evaluation on probabilistic databases.
 VLDB Journal.
 http://www.vldb.org/conf/2004/RS22P1.PDF.

Green, T. J. and Tannen, V. (2006). **Models for incomplete and probabilistic information.** *IEEE Data Eng. Bull.* http://sites.computer.org/debull/A06mar/green.ps.

Huang, J., Antova, L., Koch, C., and Olteanu, D. (2009).
 MayBMS: a probabilistic database management system.
 In SIGMOD.
 https://www.cs.ox.ac.uk/dan.olteanu/papers/hako-sigmod09.pdf.

References iii

- Lakshmanan, L. V. S., Leone, N., Ross, R. B., and Subrahmanian, V. S. (1997).

ProbView: A flexible probabilistic database system.

ACM Transactions on Database Systems. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.53. 293&rep=rep1&type=pdf.

Ré, C. and Suciu, D. (2007). **Materialized views in probabilistic databases: for information exchange and query optimization.** In *VLDB*.

http://www.cs.stanford.edu/people/chrismre/papers/prob_ materialized_views_TR.pdf.

Suciu, D., Olteanu, D., Ré, C., and Koch, C. (2011). Probabilistic Databases.

Morgan & Claypool. Unavailable online.