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Reminder: TID

Remember tuple-independent databases (TID):

U

date prof

04 S 0.8
04 A 0.2

Remember that they stand for a probabilistic database:

U

date prof

04 S
04 A
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date prof
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04 A
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date prof

04 S
04 A

0.8× 0.2 (1− 0.8)× 0.2 0.8× (1− 0.2) (1− 0.8)× (1− 0.2)
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Reminder: Relational algebra on probabilistic databases

U1
04 S. C017
11 S. C47

π(U1) = 0.8

U2
11 A. C017

π(U2) = 0.2

∪

V1

π(V1) = 0.9

V2
11 A. C017

π(V2) = 0.1

=

W1

04 S. C017
11 S. C47

π(W1) = 0.8× 0.9

W2

04 S. C017
11 S. C47
11 A. C017

π(W1) = 0.8× 0.1

W3

11 A. C017

π(W1) = 0.2× 0.9
+0.2× 0.1
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Reminder: strong representation system

• TID are not a strong representation system

• The result of a relational algebra query on a TID database
is generally not representable as a TID database

→ Often, we don’t want the entire result

→ We just want to know the probability of each output tuple
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Probabilistic query evaluation

• Inputs:
• a database D of TID instances
• a relational algebra query Q
• a result tuple~t

• Output : what is the probability that~t is in Q(D)?

→ What is the marginal probability of obtaining~t as a result?
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Probabilistic query evaluation example

TID instance U Query Q Tuple~t

date prof

04 S 0.8
04 A 0.2

πprof(U) S

→ The marginal probability is 0.8
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Marginal probabilities vs TID representations

Here’s another example:

TID instance U′ TID instance V Query Q Tuple~t

date prof

04 S 1
04 A 1

date

04 0.5

πprof(U′ ./ V) S

and

A

→ The marginal probability of S is 0.5
→ The marginal probability of A is also 0.5
→ Caution: It does not mean that the result is

the TID instance at the right!

prof

S 0.5
A 0.5
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Motivation for probabilistic query evaluation

• Answers the intuitive question “what is the probability of this”?
• Often more interesting than the correlations between worlds

→ How to compute these probabilities?
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Naive probabilistic query evaluation

• Compute the probabilistic instance represented by the input
→ Finite number of possible worlds

• Run the query over each possible world
→ Check if the result tuple is in the output

• Sum the probabilities of all worlds that contain the output tuple

11/45



Naive probabilistic query evaluation

• Compute the probabilistic instance represented by the input
→ Finite number of possible worlds

• Run the query over each possible world
→ Check if the result tuple is in the output

• Sum the probabilities of all worlds that contain the output tuple

11/45



Naive probabilistic query evaluation

• Compute the probabilistic instance represented by the input
→ Finite number of possible worlds

• Run the query over each possible world
→ Check if the result tuple is in the output

• Sum the probabilities of all worlds that contain the output tuple

11/45



Naive probabilistic query evaluation example

TID instance U Query Q Tuple~t

date prof

04 S 0.8
04 A 0.2

πprof(U) S

Probabilistic relation Q(U):

prof

S
A

prof

S
A

prof

S
A

prof

S
A

0.8× 0.2 (1− 0.8)× 0.2 0.8× (1− 0.2) (1− 0.8)× (1− 0.2)

Total probability that~t is in Q(U): 0.8× 0.2+ 0.8× (1− 0.2) = 0.8
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Naive evaluation advantages and drawbacks

• Naive evaluation is always possible

• However, it takes exponential time in general
→ Even if the query output has few possible worlds!
→ Feasible if the input has few possible worlds (few tuples)

• Probabilistic query evaluation is computationally intractable
so it is unlikely that we can beat naive evaluation in general
→ More e�cient methods for special cases
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Extensional evaluation idea

• Sometimes we can compute the probabilities at each step:

U

date prof

04 S 0.8
04 A 0.2

V

student

1 0.4
2 0.6

U× V

date prof student

04 S 1

0.8× 0.4

04 S 2

0.8× 0.6

04 A 1

0.2× 0.4

04 A 2

0.2× 0.6
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Query independence

• We say that queries Q and Q′ are syntactically independent
if no relation is used in both Q and Q′

→ Example: Q = R ./ S and Q′ = πa(T × U)
→ Intuition: the tuples in Q and Q′ are independent

• Independent join: if Q and Q′ are syntactically independent then
we can compute Q ./ Q′ and Q× Q′: multiply the probabilities

U

date pr

04 S 0.8
04 A 0.2

V

pr st

A 1 0.4
S 2 0.6

U ./ V

date pr st

04 S 2

0.8× 0.6

04 A 1

0.2× 0.4
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More query independence

• Independent union: for syntactically independent Q and Q′

we can compute Q ∪ Q′ using the rule for independent OR

U

date prof

04 S 0.8
04 A 0.2

V

date prof

04 A 0.4
11 A 0.2

U ∪ V

date prof

04 S

0.8

04 A

1− (1− 0.2)× (1− 0.4)

11 A

0.2

17/45
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Selection

Selection can just be applied in the straightforward way:

U

date prof

04 S 0.8
04 A 0.2

σprof=“S”(U)

date prof

04 S 0.8
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Independent projection

• Self-join-free conjunctive query: a join (./) of projections (π)
that does not use the same relation name twice:
→ Example: Q = R ./ S ./ πa(T)

• A separator is an attribute that occurs in all tables of the join:
→ Example: if R(a,b), S(a), T(a, c) then a is a separator of Q

• If Q is a self-join-free conjunctive query and a is a separator
then π−a (projecting away the attribute a)
can be computed using independent OR
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Independent projection example

U

date prof

04 S 0.8
04 A 0.2
11 S 0.4
11 A 0.6

πdate(U)

date

04

1− (1− 0.8)× (1− 0.2)

11

1− (1− 0.4)× (1− 0.6)
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Another independent projection example

Consider the two tables:

U

date prof

04 S 1/2

V

prof cause

S illness 1/2
S bahamas 1/2

• Query: Q(U, V) = πdate,prof(U ./ V)
• Can be rewritten as: U ./ π−cause(V)

π−cause(V)

prof

S 3/4

U ./ π−cause(V)

date prof

04 S 3/8

21/45
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The choice of plan matters!

• Query: Q(U, V) = πdate,prof(U ./ V)
• Can be rewritten as π−cause(U ./ V) instead of U ./ π−cause(V)

U

date prof

04 S 1/2

V

prof cause

S illness 1/2
S bahamas 1/2

U ./ V

date prof cause

04 S illness

1/4

04 S bahamas

1/4

π−cause(U ./ V)

date prof

04 S

7/16 ??

→ The last projection is not independent, so incorrect result!
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Safe plans

• A safe plan for a query Q is a way to implement Q
using the extensional operators:

• It must use them correctly, e.g., respecting independence
• It must be equivalent to the desired query Q

→ With a safe plan, we can compute the marginal probability
of all query results
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Do all queries have a safe plan?

• Relations R(a), S(a,b), T(b)

• Query Q = π−a(π−b(R ./ S ./ T))

• Does Q have a safe plan?
• If we do the joins �rst then no projection is independent
• If we write Q as π−a(R ./ π−b(S ./ T)))
then the projection is not safe

• Same problem for π−b(π−a(R ./ S) ./ T)

→ In fact Q is intractable and it has no safe plan
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Extensional query evaluation summary

• Extensional query evaluation:
• Express the query as a safe plan with the extensional operators
• Compute the query results and their probabilities via the plan
• The probabilities are correct because the plan is safe

• Summary of safe operators:
• Product and join of syntactically independent queries

→ Product of independent probabilities
• Union of syntactically independent queries

→ Independent OR of the probabilities
• Projecting away a separator attribute

→ Independent OR because the tuples in each group are independent
• Applying selection in the straightforward way
• Also other rules: negation, inclusion-exclusion, etc.

→ Not all queries have safe plans
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Idea of intensional query evaluation

• We cannot always compute directly the probabilities of results
• Idea:

• Compute a lineage expression for each output tuple
describing the possible worlds where it appears

• Compute the probability of these lineage expressions

• Advantages:
• Intensional evaluation is always possible (but not always e�cient)
• Intensional evaluation is more modular:

→ Compute the lineage expression (no probabilities)
→ Use any model counting method or software

• Disadvantages:
• Two steps: (1.) compute the lineage; (2.) compute the probability
• The lineage expression loses information about the query
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Reminder: pc-tables

Remember that a TID is a special case of a pc-table:

U

date prof x1 : 0.8, x2 : 0.2

04 S x1
04 A x2

Remember that pc-tables are a strong representation system (same
rules as for pc-tables for relational algebra operators)
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pc-table query example

U

date prof x1 : 0.8, x2 : 0.2

04 S x1
04 A x2

πdate(U)

date x1 : 0.8, x2 : 0.2

04 x1 ∨ x2
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Lineage expression

πdate(U)

date x1 : 0.8, x2 : 0.2

04 x1 ∨ x2

• The lineage expression x1 ∨ x2 describes the possible worlds
where the tuple 04 appears.

• The probability that x1 ∨ x2 is true
is exactly the probability that this tuple is in the result
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Intensional query evaluation

• Translate the TID to a pc-table

• Evaluate the query on the pc-table using c-table rules

• Compute the probability P(φ) of the lineage expression φ
of the output tuple under consideration

→ We have reduced probabilistic query evaluation
to computing the probability that a Boolean formula is true
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How to compute the probability of a lineage expression?

Many ways to compute the probability P(φ):

• Naive method: enumerate all possibilities (exponential)

• Use some simple intensional rules
→ e.g., P(φ(x, y, z) ∧ ψ(x′, y′, z′)) = P(φ(x, y, z))× P(ψ(x′, y′, z′))

thanks to independence

• Compile the lineage expression in a tractable formalism
• read-once formulas
• tractable circuit classes
• binary decision diagrams

• Approximate the probability of the lineage expression

• Use an external weighted model counter
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Naive evaluation

Example: formula φ = x1 ∨ x2 with P(x1 = 1) = 0.8 and P(x2 = 1) = 0.2

• If x1 is true and x2 is true, the formula is true
→ Probability 0.8× 0.2

• If x1 is true and x2 is false, the formula is true
→ Probability 0.8× (1− 0.2)

• If x1 is false and x2 is true, the formula is true
→ Probability (1− 0.8)× 0.2

• If x1 is false and x2 is false, the formula is false
→ Probability (1− 0.8)× (1− 0.2)

→ P(φ) = 0.8× 0.2+ 0.8× (1− 0.2) + (1− 0.8)× 0.2 = 0.84
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Intensional rule de�nitions

• φ and ψ are syntactically independent
if they have no variables in common
→ E.g., φ(x, y, z) and ψ(x′, y′, z′)

• φ and ψ are mutually exclusive if φ ∧ ψ is unsatis�able
→ E.g., φ = x ∧ y and ψ = ¬x ∧ (y ∨ z)

• φ|x=0 is the result of replacing x by 0 in φ (and likewise forφ|x=1)
→ E.g., for φ = ¬x ∧ (y ∨ z), we haveφ|x=0 = y ∨ z andφ|x=1 = ⊥
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Intensional rules

• Independent AND: if φ and ψ are syntactically independent then:
P(φ ∧ ψ) = P(φ)× P(ψ)

• Independent OR: if φ and ψ are syntactically independent then:
P(φ ∨ ψ) = 1− (1− P(φ))× (1− P(ψ))

• Mutually exclusive OR: if φ and ψ are mutually exclusive then:
P(φ ∨ ψ) = P(φ) + P(ψ)

• Negation: for any φ, we have P(¬φ) = 1− P(φ)

• Shannon expansion: for any φ and variable x, we have:
P(φ) = P(x = 0)× P(φ|x=0) + P(x = 1)× P(φ|x=1)
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Application of intensional rules

• We can always compute probabilities with intensional rules
→ But Shannon expansions are costly and may be exponential
• The e�ciency of these rules depends:

• on how the lineage is written
• on the order in which they are applied

• Note that these rules are a bit similar to the extensional rules
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Tractable lineage formalisms

• Read-once formula: each variable occurs at most once
→ If the lineage is written in this way, we can compute the probability

with independent AND, independent OR, negation

• Tractable Boolean circuit representations of lineages

• Tractable representations as Binary decision diagrams
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Boolean circuit representations

Circuits are just a way to represent Boolean formulas
while factoring common subexpressions (more concise)

∨

¬

x

∧

y

• Directed acyclic graph of gates

• Output gate:

• Variable gates: x

• Internal gates: ∨ ∧ ¬

• Valuation: function from variables to {0, 1}
Example: ν = {x 7→ 0, y 7→ 1}... mapped to 1
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Circuit restrictions

Tractable circuit class: d-DNNF:

• ∨ are all deterministic:

The inputs are mutually exclusive
(= no valuation ν makes two inputs
simultaneously evaluate to 1)

• ∧ are all decomposable:

The inputs are independent
(= no variable x has a path to two
di�erent inputs)

→ We can compute the probability of a
d-DNNF with the intensional rules

∨

∧

x ∧

y ¬

z

∧∧

¬

x ∧

y z
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Ordered Binary Decision Diagram (OBDD)

OBDD for a Boolean query Q on database I:
ordered decision diagram on the facts of I to decide whether Q holds

Q : π∅(R ./ S ./ T)

R

a r1
b r2
c r3

S

a a s1
b v s2
b w s3

T

v t1
w t2
b t3

r2?

0

0

1

0
1

1

0

1
0

1

0 1

→ We can compute the probability of an OBDD bottom-up
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Approximation

• When it’s too hard to compute the exact probability,
we can approximate it

• One possibility is to compute a lower bound and upper bound:
• max(P(φ),P(ψ)) ≤ P(φ ∨ ψ) ≤ min(P(φ) + P(ψ), 1)
• max(0,P(φ) + P(ψ)− 1) ≤ P(φ ∧ ψ) ≤ min(P(φ),P(ψ)) (by duality)
• P(¬φ) = 1− P(φ) (reminder)
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Approximation by sampling

Another possibility is to approximate via Monte-Carlo sampling:

• Pick a random valuation according to the variable probabilities:
→ Set x1 = 0 with probability on P(x1 = 0) and x1 = 1 otherwise
→ Repeat for the other variables

• Evaluate the lineage formula φ under this valuation

• Approximate the probability of the formula φ
as the proportion of times when it was true

• Theoretical guarantees: on how many samples su�ce so that,
with high probability, the estimated probability is almost correct
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Using external tools

• Specialized software to compute the probability of a formula:
weighted model counters

• Examples (ongoing research):
• c2d: http://reasoning.cs.ucla.edu/c2d/download.php
• d4: https://www.cril.univ-artois.fr/KC/d4.html
• dsharp: https://bitbucket.org/haz/dsharp
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Summary

• We have seen probabilistic query evaluation on TID instances:
compute the marginal probability of each query output tuple

• We can enumerate naively all possible worlds, but it is ine�cient

• For some queries, we can do better:
• Extensional evaluation: �nd a safe plan so we can correctly
compute all probabilities as the query is being evaluated

• Intensional evaluation:
• compute the lineage of each result via pc-tables
• compute the probability of each lineage expression
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